Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation

The American Journal of Human Genetics (Impact Factor: 10.99). 12/2013; 94(1). DOI: 10.1016/j.ajhg.2013.11.008
Source: PubMed

ABSTRACT Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA.


Available from: Barbara Garavaglia, Feb 22, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegeneration with brain iron accumulation (NBIA) encompasses a group of inherited disorders that share the clinical features of an extrapyramidal movement disorder accompanied by varying degrees of intellectual disability and abnormal iron deposition in the basal ganglia. The genetic basis of ten forms of NBIA is now known. The clinical features of NBIA range from rapid global neurodevelopmental regression in infancy to mild parkinsonism with minimal cognitive impairment in adulthood, with wide variation seen between and within the specific NBIA sub-type. This review describes the clinical presentations, imaging findings, pathologic features, and treatment considerations for this heterogeneous group of disorders.
    01/2015; 8(1):1-13. DOI:10.14802/jmd.14034
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trace elements, such as iron, copper, manganese, and calcium, which are essential constituents necessary for cellular homeostasis, become toxic when present in excess quantities. In this article, we describe disorders arising from endogenous dysregulation of metal homeostasis leading to their tissue accumulation. Although subgroups of these diseases lead to regional brain metal accumulation, mostly in globus pallidus, which is susceptible to accumulate divalent metal ions, other subgroups cause systemic metal accumulation affecting the whole brain, liver, and other parenchymal organs. The latter group comprises Wilson disease, manganese transporter deficiency, and aceruloplasminemia and responds favorably to chelation treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neurologic Clinics 11/2014; 33(1). DOI:10.1016/j.ncl.2014.09.006 · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegeneration with brain iron accumulation (NBIA) is a group of neurodegenerative disorder with deposition of iron in the brain (mainly Basal Ganglia) leading to a progressive Parkinsonism, spasticity, dystonia, retinal degeneration, optic atrophy often accompanied by psychiatric manifestations and cognitive decline. 8 of the 10 genetically defined NBIA types are inherited as autosomal recessive and the remaining two by autosomal dominant and X-linked dominant manner. Brain MRI findings are almost specific and show abnormal brain iron deposition in basal ganglia some other related anatomical locations. In some types of NBIA cerebellar atrophy is the major finding in MRI.
    Iranian Journal of Child Neurology 01/2014; 8(4):1-8.