Article

Plasmodium falciparum is dependent on de novo myo-inositol biosynthesis for assembly of GPI glycolipids and infectivity.

Molecular Microbiology (Impact Factor: 5.03). 12/2013; DOI: 10.1111/mmi.12496
Source: PubMed

ABSTRACT Intraerythrocytic stages of the malaria parasite, Plasmodium falciparum, are thought to be dependent on de novo synthesis of phosphatidylinositol, as red blood cells (RBC) lack the capacity to synthesize this phospholipid. The myo-inositol headgroup of PI can either be synthesized de novo or scavenged from the RBC. An untargeted metabolite profiling of P. falciparum infected RBC showed that trophozoite and schizont stages accumulate high levels of myo-inositol-3-phosphate, indicating increased de novo biosynthesis of myo-inositol from glucose-6-phosphate. Metabolic labelling studies with (13) C-U-glucose in the presence and absence of exogenous inositol confirmed that de novo myo-inositol synthesis occurs in parallel with myo-inositol salvage pathways. Unexpectedly, while both endogenous and scavenged myo-inositol was used to synthesize bulk PI, only de novo-synthesized myo-inositol was incorporated into GPI glycolipids. Moreover, gene disruption studies suggested that the INO1 gene, encoding myo-inositol 3-phosphate synthase, is essential in asexual parasite stages. Together these findings suggest that P. falciparum asexual stages are critically dependent on de novo myo-inositol biosynthesis for assembly of a sub-pool of PI species and GPI biosynthesis. These findings highlight unexpected complexity in phospholipid biosynthesis in P. falciparum and a lack of redundancy in some nutrient salvage versus endogenous biosynthesis pathways.

1 Follower
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolomics-based studies are proving of great utility in the analysis of modes of action (MOAs) and resistance mechanisms of drugs in parasitic protozoa. They have helped to determine the MOA of eflornithine, half of the gold standard combination therapy in use against human African trypanosomiasis (HAT), as well as the mechanism of resistance to this drug. In Leishmania, metabolomics has also given insight into the MOA of miltefosine, an alkylphospholipid. Several studies on antimony resistance in Leishmania have been conducted, analyzing the metabolic content of resistant lines, offering clues as to the MOA of this class of drugs. A study of chloroquine resistance in Plasmodium falciparum combined metabolomics techniques with other genetic and proteomic techniques to offer new insight into the role of the PfCRT protein. The MOA and mechanism of resistance to a group of halogenated pyrimidines in Trypanosoma brucei have also recently been elucidated. Effective as metabolomics techniques are, care must be taken in the design and implementation of these experiments, to ensure the resulting data are meaningful. This review outlines the steps required to conduct a metabolomics experiment as well as provide an overview of metabolomics-based drug research in protozoa to date.
    Journal of Biomolecular Screening 10/2014; 20(1). DOI:10.1177/1087057114551519 · 2.01 Impact Factor

Full-text

Download
24 Downloads
Available from
May 17, 2014