Translational Profiling of Clock Cells Reveals Circadianly Synchronized Protein Synthesis

University of Geneva, Switzerland
PLoS Biology (Impact Factor: 9.34). 11/2013; 11(11):e1001703. DOI: 10.1371/journal.pbio.1001703
Source: PubMed


Genome-wide studies of circadian transcription or mRNA translation have been hindered by the presence of heterogeneous cell populations in complex tissues such as the nervous system. We describe here the use of a Drosophila cell-specific translational profiling approach to document the rhythmic "translatome" of neural clock cells for the first time in any organism. Unexpectedly, translation of most clock-regulated transcripts-as assayed by mRNA ribosome association-occurs at one of two predominant circadian phases, midday or mid-night, times of behavioral quiescence; mRNAs encoding similar cellular functions are translated at the same time of day. Our analysis also indicates that fundamental cellular processes-metabolism, energy production, redox state (e.g., the thioredoxin system), cell growth, signaling and others-are rhythmically modulated within clock cells via synchronized protein synthesis. Our approach is validated by the identification of mRNAs known to exhibit circadian changes in abundance and the discovery of hundreds of novel mRNAs that show translational rhythms. This includes Tdc2, encoding a neurotransmitter synthetic enzyme, which we demonstrate is required within clock neurons for normal circadian locomotor activity.

Download full-text


Available from: Yanmei Huang,
30 Reads
  • Source
    • "TRAP has been applied to cell-types in various mouse tissues including brain (Doyle et al., 2008; Heiman et al., 2008; Schmidt et al., 2012; Ainsley et al., 2014), heart (Fang et al., 2013; Zhou et al., 2013), liver (Wilkins et al., 2014), and kidney (Liu et al., 2014). In addition to mice, TRAP has been applied in other species such as drosophila and zebrafish (Thomas et al., 2012; Huang et al., 2013; Tryon et al., 2013). TRAP has the advantages of being more high-throughput than LCM without requiring the dissociation of neurons from intact tissue as needed for FACS. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acquiring the gene expression profiles of specific neuronal cell-types is important for understanding their molecular identities. Genome-wide gene expression profiles of genetically defined cell-types can be acquired by collecting and sequencing mRNA that is bound to epitope-tagged ribosomes (TRAP; translating ribosome affinity purification). Here, we introduce a transgenic mouse model that combines the TRAP technique with the tetracycline transactivator (tTA) system by expressing EGFP-tagged ribosomal protein L10a (EGFP-L10a) under control of the tetracycline response element (tetO-TRAP). This allows both spatial control of EGFP-L10a expression through cell-type specific tTA expression, as well as temporal regulation by inhibiting transgene expression through the administration of doxycycline. We show that crossing tetO-TRAP mice with transgenic mice expressing tTA under the Camk2a promoter (Camk2a-tTA) results in offspring with cell-type specific expression of EGFP-L10a in CA1 pyramidal neurons and medium spiny neurons in the striatum. Co-immunoprecipitation confirmed that EGFP-L10a integrates into a functional ribosomal complex. In addition, collection of ribosome-bound mRNA from the hippocampus yielded the expected enrichment of genes expressed in CA1 pyramidal neurons, as well as a depletion of genes expressed in other hippocampal cell-types. Finally, we show that crossing tetO-TRAP mice with transgenic Fos-tTA mice enables the expression of EGFP-L10a in CA1 pyramidal neurons that are activated during a fear conditioning trial. The tetO-TRAP mouse can be combined with other tTA mouse lines to enable gene expression profiling of a variety of different cell-types.
    Frontiers in Molecular Neuroscience 10/2014; 7:82. DOI:10.3389/fnmol.2014.00082 · 4.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deep transcriptome sequencing has revealed the existence of many transcripts that lack long or conserved open reading frames (ORFs) and which have been termed long non-coding RNAs (lncRNAs). The vast majority of lncRNAs are lineage-specific and do not yet have a known function. In this study, we test the hypothesis that they may act as a repository for the synthesis of new peptides. We find that a large fraction of the lncRNAs expressed in cells from six different species is associated with ribosomes. The patterns of ribosome protection are consistent with the translation of short peptides. lncRNAs show similar coding potential and sequence constraints than evolutionary young protein coding sequences, indicating that they play an important role in de novo protein evolution. DOI:
    eLife Sciences 05/2014; 3. DOI:10.7554/eLife.03523 · 9.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression programs activated in response to, or in anticipation of, environmental changes involve sequential steps, from transcription and RNA processing to nuclear export and translation. Here we review recent advances in our understanding of the multiple regulatory layers that control the oscillations in gene expression associated with daily rhythms in metabolism and physiology across eukaryotic organisms. Whereas many genes show coordinated oscillations in transcription, RNA processing and translation, others show significant temporal disconnections between these processes. Thus, circadian oscillations constitute an ideal system for examining how multiple transcriptional and post-transcriptional regulatory steps are integrated to maximize organismal adjustments to environmental conditions.
    Current opinion in genetics & development 05/2014; 27C:35-42. DOI:10.1016/j.gde.2014.03.007 · 7.57 Impact Factor
Show more