Article

Dysregulation of microRNA Expression and Function Contributes to the Etiology of Fetal Alcohol Spectrum Disorders

Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, Texas, USA.
Alcohol research : current reviews 03/2013; 35(1):18-24.
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are members of a large class of non-protein-coding RNA (ncRNA) molecules that represent a significant, but until recently unappreciated, layer of cellular regulation. Assessment of the generation and function of miRNAs suggests that these ncRNAs are vulnerable to interference from genetic, epigenetic, and environmental factors. A small but rapidly expanding body of studies using a variety of animal- and cell culture-based experimental models also has shown that miRNAs are important targets of alcohol during fetal development and that their dysregulation likely plays a significant role in the etiology of fetal alcohol spectrum disorders (FASD). Accordingly, an analysis of the regulation and function of these miRNAs may yield important clues to the management of FASD.

0 Bookmarks
 · 
31 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most drugs of abuse easily cross the placenta and can affect fetal brain development. In utero exposures to drugs thus can have long-lasting implications for brain structure and function. These effects on the developing nervous system, before homeostatic regulatory mechanisms are properly calibrated, often differ from their effects on mature systems. In this review, we describe current knowledge on how alcohol, nicotine, cocaine, amphetamine, ecstasy and opiates (among other drugs) produce alterations in neurodevelopmental trajectory. We focus both on animal models and available clinical and imaging data from longitudinal human cohorts. Early studies of fetal exposures focused on classic teratological methods that are insufficient for revealing more subtle effects that are nevertheless very behaviorally relevant. Modern mechanistic approaches have informed us greatly as to how to potentially ameliorate the induced deficits in brain formation and function, but conclude that better delineation of sensitive periods, dose-response relationships, and long-term longitudinal studies assessing future risk of offspring to exhibit learning disabilities, mental health disorders, and limited neural adaptations are crucial to limit the societal impact of these exposures.Neuropsychopharmacology Reviews accepted article preview online, 18 June 2014; doi:10.1038/npp.2014.147.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 06/2014; · 8.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal alcohol spectrum disorders (FASDs) are associated with abnormal social behavior. These behavioral changes may resemble those seen in autism. Rats acutely exposed to ethanol on gestational day 12 show decreased social motivation at postnatal day 42. We previously showed that housing these ethanol-exposed rats with non-exposed controls normalized this deficit. The amygdala is critical for social behavior and regulates it, in part, through connections with the basal ganglia, particularly the ventral striatum. MicroRNAs (miRNAs) are short, hairpin-derived RNAs that repress mRNA expression. Many brain disorders, including FASD, show dysregulation of miRNAs. In this study, we tested if miRNA and mRNA networks are altered in the amygdala and ventral striatum as a consequence of prenatal ethanol exposure and show any evidence of reversal as a result of social enrichment. RNA samples from two different brain regions in 72 male and female adolescent rats were analyzed by RNA-Seq and microarray analysis. Several miRNAs showed significant changes due to prenatal ethanol exposure and/or social enrichment in one or both brain regions. The top predicted gene targets of these miRNAs were mapped and subjected to pathway enrichment analysis. Several miRNA changes caused by ethanol were reversed by social enrichment, including mir-204, mir-299a, miR-384-5p, miR-222-3p, miR-301b-3p, and mir-6239. Moreover, enriched gene networks incorporating the targets of these miRNAs also showed reversal. We also extended our previously published mRNA expression analysis by directly examining all annotated brain-related canonical pathways. The additional pathways that were most strongly affected at the mRNA level included p53, CREB, glutamate, and GABA signaling. Together, our data suggest a number of novel epigenetic mechanisms for social enrichment to reverse the effects of ethanol exposure through widespread influences on gene expression.
    Frontiers in Pediatrics 09/2014; 2:103.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The etiology of many brain diseases remains allusive to date after intensive investigation of genomic background and symptomatology from the day of birth. Emerging evidences indicate that a third factor, epigenetics prior to the birth, can exert profound influence on the development and functioning of the brain and over many neurodevelopmental syndromes. This chapter reviews how aversive environmental exposure to parents might predispose or increase vulnerability of offspring to neurodevelopmental deficit through alteration of epigenetics. These epigenetic altering environmental factors will be discussed in the category of addictive agents, nutrition or diet, prescriptive medicine, environmental pollutant, and stress. Epigenetic alterations induced by these aversive environmental factors cover all aspects of epigenetics including DNA methylation, histone modification, noncoding RNA, and chromatin modification. Next, the mechanisms how these environmental inputs influence epigenetics will be discussed. Finally, how environmentally altered epigenetic marks affect neurodevelopment is exemplified by the alcohol-induced fetal alcohol syndrome. It is hoped that a thorough understanding of the nature of prenatal epigenetic inputs will enable researchers with a clear vision to better unravel neurodevelopmental deficit, late-onset neuropsychiatric diseases, or idiosyncratic mental disorders.
    International Review of Neurobiology 01/2014; 115:1-49. · 2.46 Impact Factor

Full-text (2 Sources)

Download
2 Downloads
Available from
Jan 27, 2015