Article

Genome-wide DNA methylation changes with age in disease-free human skeletal muscle

Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
Aging cell (Impact Factor: 5.94). 11/2013; 13(2). DOI: 10.1111/acel.12180
Source: PubMed

ABSTRACT A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically, and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are over represented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes, that were correlated with increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging post-mitotic skeletal muscle and DNA methylation. This article is protected by copyright. All rights reserved.

3 Followers
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes mellitus (T2D) is a slowly progressive disease that can be postponed or even avoided through lifestyle changes. Recent data demonstrate highly significant correlations between DNA methylation and the most important risk factors of T2D, including age and body mass index, in blood and human tissues relevant to insulin resistance and T2D. Also, T2D patients and individuals with increased risk of the disease display differential DNA methylation profiles and plasticity compared to controls. Accordingly, the novel clues to DNA methylation fingerprints in blood and tissues with deteriorated metabolic capacity indicate that blood-borne epigenetic biomarkers of T2D progression might become a reality. This Review will address the most recent associations between DNA methylation and diabetes-related traits in human tissues and blood. The overall focus is on the potential of future epigenome-wide studies, carried out across tissues and populations with correlations to pre-diabetes and T2D risk factors, to build up a library of epigenetic markers of risk and early progression of T2D. These markers may, tentatively in combination with other predictors of T2D development, increase the possibility of individual-based lifestyle prevention of T2D and associated metabolic diseases.
    Frontiers in Endocrinology 01/2015; 6:43. DOI:10.3389/fendo.2015.00043
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related changes in DNA methylation occurring in blood leukocytes during early childhood may reflect epigenetic maturation. We hypothesized that some of these changes involve gene networks of critical relevance in leukocyte biology and conducted a prospective study to elucidate the dynamics of DNA methylation. Serial blood samples were collected at 3, 6, 12, 24, 36, 48 and 60 months after birth in ten healthy girls born in Finland and participating in the Type 1 Diabetes Prediction and Prevention Study. DNA methylation was measured using the HumanMethylation450 BeadChip. After filtering for the presence of polymorphisms and cell-lineage-specific signatures, 794 CpG sites showed significant DNA methylation differences as a function of age in all children (41.6% age-methylated and 58.4% age-demethylated, Bonferroni-corrected P value <0.01). Age-methylated CpGs were more frequently located in gene bodies and within +5 to +50 kilobases (kb) of transcription start sites (TSS) and enriched in developmental, neuronal and plasma membrane genes. Age-demethylated CpGs were associated to promoters and DNAse-I hypersensitivity sites, located within -5 to +5 kb of the nearest TSS and enriched in genes related to immunity, antigen presentation, the polycomb-group protein complex and cytoplasm. This study reveals that susceptibility loci for complex inflammatory diseases (for example, IRF5, NOD2, and PTGER4) and genes encoding histone modifiers and chromatin remodeling factors (for example, HDAC4, KDM2A, KDM2B, JARID2, ARID3A, and SMARCD3) undergo DNA methylation changes in leukocytes during early childhood. These results open new perspectives to understand leukocyte maturation and provide a catalogue of CpG sites that may need to be corrected for age effects when performing DNA methylation studies in children.
    03/2015; 7(1):34. DOI:10.1186/s13148-015-0064-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis.
    Frontiers in Aging Neuroscience 01/2015; 7:19. DOI:10.3389/fnagi.2015.00019 · 2.84 Impact Factor

Full-text (2 Sources)

Download
16 Downloads
Available from
Sep 15, 2014