Floral Transcriptome Sequencing for SSR Marker Development and Linkage Map Construction in the Tea Plant (Camellia sinensis)

National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, P. R. China
PLoS ONE (Impact Factor: 3.53). 11/2013; 8(11):e81611. DOI: 10.1371/journal.pone.0081611
Source: PubMed

ABSTRACT Despite the worldwide consumption and high economic importance of tea, the plant (Camellia sinensis) is not well studied in molecular biology. Under the few circumstances in which the plant is studied, C. sinensis flowers, which are important for reproduction and cross-breeding, receive less emphasis than investigation of its leaves or roots. Using high-throughput Illumina RNA sequencing, we analyzed a C. sinensis floral transcriptome, and 26.9 million clean reads were assembled into 75,531 unigenes averaging 402 bp. Among them, 50,792 (67.2%) unigenes were annotated with a BLAST search against the NCBI Non-Redundant (NR) database and 10,290 (16.67%) were detected that contained one or more simple sequence repeats (SSRs). From these SSR-containing sequences, 2,439 candidate SSR markers were developed and 720 were experimentally tested, validating 431 (59.9%) novel polymorphic SSR markers for C. sinensis. Then, a consensus SSR-based linkage map was constructed that covered 1,156.9 cM with 237 SSR markers distributed in 15 linkage groups. Both transcriptome information and the genetic map of C. sinensis presented here offer a valuable foundation for molecular biology investigations such as functional gene isolation, quantitative trait loci mapping, and marker-assisted selection breeding in this important species.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medicinal plants have been of great importance to human health care since the advent of medicine. A huge array of molecules has been obtained from these phytopharmaceutical-yielding species that have influenced human lives since the beginning of plant-based life-saving medicines. Some of these molecules have taken the form of taxol, aspirin, and artemisinin. With the flourishing era of high throughput next generation sequencing technologies, a hot pursuit for sequencing the genomes and transcriptomes of these life-saving plants is underway. Although few genomes have been sequenced or are currently being addressed, the number of transcriptomes sequenced has sky-rocketed in the last couple of years and continues to surge forward with immense pace, covering all important genera of medicinal plants. I have attempted to provide the current status, progress, opportunities, and challenges of these sequencing endeavors in this comprehensive and updated review. It is my hope that this information will provide both specialists and non-specialists with the current trends and future directions of this interesting category of plants.
    02/2014; 2(2):1-14. DOI:10.14304/SURYA.JPR.V2N2.1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chinese jujube (Ziziphus jujuba Mill.) is an economically important deciduous tree that has high therapeutic value and health benefits. However, a lack of sequence data and molecular markers have constrained genetic and breeding studies for better fruit quality and other traits in Chinese jujube. In this study, two combined cDNA libraries of 'Dongzao' fruit representing the early and late stages of fruit development were constructed and sequenced on the 454 GS FLX Titanium platform. In total, 1,124,197 reads were generated and then de novo assembled into 97,479 unigenes. A total of 52,938 unigenes were homologous to genes in the NCBI non-redundant sequence database. A total of 33,123 unigenes were assigned to one or more Gene Ontology terms, and 16,693 unigenes were classified into 319 Kyoto Encyclopedia of Genes and Genomes pathways. The results showed that the Smirnoff-Wheeler pathway was the main pathway for the biosynthesis of ascorbic acid in Chinese jujube. The number of differentially expressed genes between the two stages of fruit development was 1,764, among which 974 and 790 genes were up-regulated and down-regulated, respectively. Furthermore, 9,893 sequences were identified containing SSRs. 93 primer pairs designed from the sequences with a tri-nucleotide repeat showed successful PCR amplification and could be validated in Chinese jujube accessions and Z. mauritiana Lam and Z. acidojujuba as well, of which 71 primer pairs were polymorphic. The obtained transcriptome provides a most comprehensive resource currently available for gene discovery and the development of functional markers in Z. jujuba. The newly developed microsatellite markers could be used in applications such as genetic linkage analysis and association studies, diversity analysis, and marker-assisted selection in Chinese jujube and related species.
    PLoS ONE 09/2014; 9(9):e106438. DOI:10.1371/journal.pone.0106438 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seashore paspalum (Paspalum vaginatum O. Swartz) is a halophytic warm-season perennial grass, which plays an important role in protection of environment. However, very limited transcriptomic and genomic information are currently available for seashore paspalum. In this study, the seashore paspalum transcriptome were sequenced using Illumina paired-end sequencing technology. In total, 32,603 unigenes with an average length of 970 bp were obtained by de novo assembly. Of the unigenes, 25,411 unigenes (77.94 %) had significant similarity with known proteins in the NCBI non-redundant protein and Swiss-Prot databases. Of these annotated unigenes, 20,962 and 10,620 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. A total of 4,699 unigenes were mapped into 118 Kyoto Encyclopedia of Genes and Genomes pathways. In addition, 3,010 potential simple sequence repeats (SSRs) were predicted for microsatellite analyse. Tri-nucleotide was the dominant repeat (1,583, 52.58 %), followed by di-nucleotide (975, 32.39 %) and tetra-nucleotide (217, 7.21 %). Fifty SSR sites were randomly selected for validation and development of EST–SSR markers. This study provided the global sequence data for seashore paspalum and demonstrated that the Illumina paired-end sequencing is a fast and cost-effective approach to gene discovery and molecular marker development.
    Genes & genomics 01/2015; 37(1). DOI:10.1007/s13258-014-0231-8 · 0.57 Impact Factor