Article

Environmental and developmental origins of ovarian reserve

Academic Unit of Human Development and Health, University of Southampton, Southampton SO16 5YA UK.
Human Reproduction Update (Impact Factor: 8.66). 11/2013; 20(3). DOI: 10.1093/humupd/dmt057
Source: PubMed

ABSTRACT BACKGROUND
Oocyte number is established early in life before a gradual loss of this ovarian reserve during reproductive life until oocyte availability becomes limiting at the menopause. Although there is a large genetic component to the ovarian reserve achieved before birth, other influences including the maternal endocrine and nutritional milieu, and environmental factors may represent important developmental determinants. Environmental and nutritional factors may also modify the downward trajectory of ovarian reserve in adult life. The combination of these early and later life influences has the potential to lead to diminished ovarian reserve, compromising fertility in later reproductive years and altering age at natural menopause.METHODS
Literature searches of the ISI Web of Knowledge database were carried out using the main terms 'ovarian reserve' and 'menopause AND age' in conjunction with a range of other terms encompassing a variety of factors with potential effects on ovarian reserve. The various searches were inspected manually and the relevant papers selected for critical analysis and interpretation.RESULTSEvidence was identified supporting the view that elevated prenatal androgens have an adverse effect on the early establishment of ovarian reserve, although the implications for ovarian reserve in the polycystic ovary syndrome (which may also be programmed through prenatal androgen exposure) remain uncertain. Recent evidence is cited suggesting that effects of maternal nutrient restriction on ovarian reserve may also involve changes in prenatal androgen exposure. A general rationale is developed through examination of evidence which emphasizes the roles of the aryl hydrocarbon receptor (AHR) and the estrogen receptor (ER) systems in ovarian reserve modulation. Because of their similarity to the natural ligands, many environmental compounds have the ability to bind to these receptors (albeit at lower affinities) and thereby have the potential to influence either the initial setting of ovarian reserve during development or the trajectory of ovarian reserve during adult life. For example, exposure to compounds in cigarette smoke may accelerate loss of ovarian reserve in smokers leading to diminished ovarian reserve, earlier age at last child and earlier menopause. Socioenocomic factors are clearly associated with age at natural menopause, with correlations with economic status and education level. However, such effects in western societies are in general small, and the underlying mechanisms remain unclear.CONCLUSIONS
Exposure to many environmental compounds, particularly to those that leach from plastics and other synthetic materials, is commonplace in modern societies to the extent that many are found at measurable concentrations in body fluids within most of the population. Relating fluid levels of individual compounds to parameters reflecting ovarian reserve in selected populations appears to be an effective way forward and, indeed, some early-stage findings do show some cause for concern. There is a pressing need for the development of practical advice enabling women to minimize their intake of AHR/ER ligands, perhaps through dietary/cosmetic choices or improved food packaging.

Download full-text

Full-text

Available from: Nick Macklon, Nov 13, 2014
3 Followers
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present review aims to ascertain whether different infertility etiologies share particular genes and/or molecular pathways with other pathologies and are associated with distinct and particular risks of later-life morbidity and mortality. In order to reach this aim, we use two different sources of information: (1) a public web server named DiseaseConnect ( http://disease-connect.org ) focused on the analysis of common genes and molecular mechanisms shared by diseases by integrating comprehensive omics and literature data; and (2) a literature search directed to find clinical comorbid relationships of infertility etiologies with only those diseases appearing after infertility is manifested. This literature search is performed because DiseaseConnect web server does not discriminate between pathologies emerging before, concomitantly or after infertility is manifested. Data show that different infertility etiologies not only share particular genes and/or molecular pathways with other pathologies but they have distinct clinical relationships with other diseases appearing after infertility is manifested. In particular, (1) testicular and high-grade prostate cancer in male infertility; (2) non-fatal stroke and endometrial cancer, and likely non-fatal coronary heart disease and ovarian cancer in polycystic ovary syndrome; (3) osteoporosis, psychosexual dysfunction, mood disorders and dementia in premature ovarian failure; (4) breast and ovarian cancer in carriers of BRCA1/2 mutations in diminished ovarian reserve; (5) clear cell and endometrioid histologic subtypes of invasive ovarian cancer, and likely low-grade serous invasive ovarian cancer, melanoma and non-Hodgkin lymphoma in endometriosis; and (6) endometrial and ovarian cancer in idiopathic infertility. The present data endorse the principle that the occurrence of a disease (in our case infertility) is non-random in the population and suggest that different infertility etiologies are genetically and clinically linked with other diseases in single meta-diseases. This finding opens new insights for clinicians and reproductive biologists to treat infertility problems using a phenomic approach instead of considering infertility as an isolated and exclusive disease of the reproductive system/hypothalamic-pituitary-gonadal axis. In agreement with a previous validation analysis of the utility of DiseaseConnect web server, the present study does not show a univocal correspondence between common gene expression and clinical comorbid relationship. Further work is needed to untangle the potential genetic, epigenetic and phenotypic relationships that may be present among different infertility etiologies, morbid conditions and physical/cognitive traits.
    Reproductive Biology and Endocrinology 04/2015; 13(1):31. DOI:10.1186/s12958-015-0029-9 · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundSeveral studies have shown that exposure to benzene is associated to menstrual disorders, miscarriages and other disorders of the reproductive system. We performed an observational prospective pilot study to evaluate if levels of benzene in follicular fluid were correlated with response to controlled ovarian stimulation.MethodThirty-four normogonadotrophic women undergoing IVF were enrolled. Intra-follicular benzene levels were evaluated by chromatography/mass spectrometry. Based on median benzene level, we divided the study population in two groups: Group A with a “low” intra-follicular benzene concentration (n = 19, benzene <0.54 ng/mL) and Group B with a “high” intra-follicular benzene concentration (n = 15, benzene ≥ 0.54 ng/mL). The ovarian response to gonadotrophins and the outcome of IVF were analyzed in the two groups.ResultsThe two groups did not differ in terms of demographic or anthropometric characteristics. Group B had significantly higher basal FSH levels, lower estradiol peak concentration, and fewer oocytes retrieved and embryos transferred (p < 0.05). Number of gonadotrophin vials, length of controlled ovarian stimulation and ongoing pregnancy rate were similar in the two groups.ConclusionIn conclusion, ovarian response to endogenous and exogenous gonadotrophins appeared to be influenced by intra-follicular benzene levels.
    Journal of Ovarian Research 06/2014; 7:67. DOI:10.1186/1757-2215-7-67 · 2.03 Impact Factor
  • European Journal of Endocrinology 10/2014; 171(4):E1-2. DOI:10.1530/EJE-14-0429 · 3.69 Impact Factor