Reactive Oxygen Species Induce Epigenetic Instability through the Formation of 8-Hydroxydeoxyguanosine in Human Hepatocarcinogenesis

Department of Gastroenterology and Hepatology, Kinki University School of Medicine, Osakasayama, Japan.
Digestive Diseases (Impact Factor: 1.83). 01/2013; 31(5-6):459-66. DOI: 10.1159/000355245
Source: PubMed

ABSTRACT Chronic hepatitis C (CHC) triggers oxidative stress and contributes to the emergence of hepatocellular carcinoma (HCC). We previously reported that tumor suppressor gene (TSG) methylation is a critical factor during the early stages of hepatocarcinogenesis. In this study, we clarify the association between oxidative stress and epigenetic alterations during hepatocarcinogenesis. We examined DNA oxidation and methylation profiles in 128 liver biopsy samples from CHC patients. The DNA oxidation and methylated TSG numbers were quantified using immunohistochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG) and quantitative PCR for 11 TSGs, respectively. The quantitative chromatin immunoprecipitation-PCR (ChIP-qPCR) assay in HepG2 and fetal liver Hc cells treated with H2O2 was used to quantify trimethyl-H3K4, acetylated-H4K16 (an active chromatin marker), trimethyl-H3K27 (a repressive chromatin marker) and 8-OHdG. We analyzed 30 promoters of 25 different TSGs by qPCR. The high levels of 8-OHdG was the only variable that was significantly associated with the increased number of methylated TSGs in CHC (p < 0.0001). The ChIP-qPCR revealed that after H2O2 treatment of the cell lines, the 8-OHdG-bound promoters showed a modification from an active chromatin (trimethyl-H3K4 and acetylated-H4K16 dominant) to a repressive chromatin (trimethyl-H3K27 dominant) status. We conclude that oxidative stress alters the chromatin status, which leads to abnormal methylation of TSGs, and contributes to hepatocarcinogenesis in CHC patients. © 2013 S. Karger AG, Basel.

  • Digestive Diseases 01/2013; 31(5-6):405-7. DOI:10.1159/000355379 · 1.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HBx is a multifunctional regulator that interacts with host factors to contribute to the development of hepatocellular carcinoma. In this study, to explore the co-localization of HBx and COXIII in HepG2 cells and to investigate the molecular mechanism of HBx in HepG2 cell growth promotion, we first constructed a HepG2 cell line stably expressing the HBx gene in vitro by lentivirus vectors. In addition, we found that HBx co-localized with the inner mitochondrial protein, COXIII, in HepG2 cells by confocal laser scanning microscopy. It led to changes of mitochondrial biogenesis and morphology, including upregulation of COXIII protein expression, increased cytochrome c oxidase activity and higher mitochondrial membrane potential. The upregulation of COX-2 caused by HBx through generation of mitochondrial reactive oxygen species promoted cell growth. Thus, we conclude that co-localization of HBx and COXIII leads to upregulation of COX-2 that promotes HepG2 cell growth. Such a mechanism provides deeper insights into the molecular mechanism of HBV-associated hepatocellular carcinoma.
    International Journal of Oncology 06/2014; 45(3). DOI:10.3892/ijo.2014.2499 · 3.03 Impact Factor