Article

Custom Cerium Oxide Nanoparticles Protect Against a Free Radical Mediated Autoimmune Degenerative Disease in the Brain.

ACS Nano (Impact Factor: 12.03). 11/2013; 7(12). DOI: 10.1021/nn403743b
Source: PubMed

ABSTRACT Cerium oxide nanoparticles are potent antioxidants, based on their ability to either donate or receive electrons as they alternate between the +3 and +4 valence states. The dual oxidation state of ceria has made it an ideal catalyst in industrial applications, and more recently, nanoceria's efficacy in neutralizing biologically generated free radicals has been explored in biological applications. Here we report the in vivo characteristics of custom-synthesized cerium oxide nanoparticles (CeNPs) in an animal model of immunological and free-radical mediated oxidative injury leading to neurodegenerative disease. The CeNPs are 2.9 nm in diameter, monodispersed and have a -23.5 mV zeta potential when stabilized with citrate/EDTA. This stabilizer coating resists being 'washed' off in physiological salt solutions, and the CeNPs remain monodispersed for long durations in high ionic strength saline. The plasma half-life of the CeNPs is ~4.0 hours, far longer than previously described, stabilized ceria nanoparticles. When administered intravenously to mice, the CeNPs were well tolerated and taken up by the liver and spleen much less than previous nanoceria formulations. The CeNPs were also able to penetrate the brain, reduce reactive oxygen species levels and alleviate clinical symptoms and motor deficits in mice with a murine model of multiple sclerosis. Thus, CeNPs may be useful in mitigating tissue damage arising from free radical accumulation in biological systems.

Download full-text

Full-text

Available from: Joseph S Erlichman, May 20, 2014
1 Follower
 · 
113 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo study of nanomaterials is complicated by the physical and chemical changes induced in the nanomaterial by exposure to biological compartments. A diverse array of proteins can bind to the nanomaterial, forming a protein corona which may alter the dispersion, surface charge, distribution, and biological activity of the material. Evidence suggests that unique synthesis and stabilization strategies can greatly affect the composition of the corona, and thus, the in vivo properties of the nanomaterial. Protein and elemental analyses techniques are critical to characterizing the nature of the protein corona in order to best predict the in vivo behavior of the nanomaterial. Further, as described here, inductively coupled mass spectroscopy (ICP-MS) can also be used to quantify nanomaterial deposition in tissues harvested from exposed animals. Elemental analysis of ceria content demonstrated deposition of cerium oxide nanoparticles (CeNPs) in various tissues of healthy mice and in the brains of mice with a model of multiple sclerosis. Thus, ICP-MS analysis of nanomaterial tissue distribution can complement data illustrating the biological, and in this case, therapeutic efficacy of nanoparticles delivered in vivo.
    Advances in Experimental Medicine and Biology 01/2014; 806:561-579. DOI:10.1007/978-3-319-06068-2_28 · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evidence indicates that nitrosative stress and mitochondrial dysfunction participate in the pathogenesis of Alzheimer's disease (AD). Amyloid beta (Aβ) and peroxynitrite induce mitochondrial fragmentation and neuronal cell death by abnormal activation of dynamin-related protein 1 (DRP1), a large GTPase that regulates mitochondrial fission. The exact mechanisms of mitochondrial fragmentation and DRP1 overactivation in AD remain unknown; however, DRP1 serine 616 (S616) phosphorylation is likely involved. Although it is clear that nitrosative stress caused by peroxynitrite has a role in AD, effective antioxidant therapies are lacking. Cerium oxide nanoparticles, or nanoceria, switch between their Ce(3+) and Ce(4+) states and are able to scavenge superoxide anions, hydrogen peroxide and peroxynitrite. Therefore, nanoceria might protect against neurodegeneration. Here we report that nanoceria are internalized by neurons and accumulate at the mitochondrial outer membrane and plasma membrane. Furthermore, nanoceria reduce levels of reactive nitrogen species and protein tyrosine nitration in neurons exposed to peroxynitrite. Importantly, nanoceria reduce endogenous peroxynitrite and Aβ-induced mitochondrial fragmentation, DRP1 S616 hyperphosphorylation and neuronal cell death.Cell Death and Differentiation advance online publication, 6 June 2014; (2014) 0, 000-000.doi:10.1038/cdd.2014.72.
    Cell Death and Differentiation 06/2014; DOI:10.1038/cdd.2014.72 · 8.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerium oxide nanoparticles (CNPs) exhibit superoxide dismutase (SOD) and catalase mimetic activities. Therefore, based on its catalytic activities, CNPs can potentially be used to treat diseases associated with oxidative stress. The potency of CNPs can be hindered by ion interaction due to chemical modifications. The issue is that phosphate ions are relatively ubiquitous in all biological relevance medium and body fluid. Our ventures in this study were to understand the phosphate ion interaction and fabricate CNPs that are biocompatible and simultaneously retain their catalytic properties in the presence of phosphate ions. CNPs were coated with polyethylene glycol and dextran in order to enhance biocompatibility. A series of experiments determined that maximizing the preserved catalytic responses were highly dependent on the Ce3+:Ce4+. Results have shown that the particles engineered with higher concentrations of Ce4+ on the surface are more robust and retain catalytic activity post buffer exposure.
    The Journal of Physical Chemistry C 08/2014; 118(33):18992–19006. DOI:10.1021/jp500791j · 4.84 Impact Factor
Show more