Mutation of Non-Essential Cysteines Shows that NF-κB Essential Modulator (NEMO) Forms a Constitutive Noncovalent Dimer that Binds IκB Kinase-β (IKKβ) with High Affinity.

Biochemistry (Impact Factor: 3.38). 11/2013; 52(51). DOI: 10.1021/bi401368r
Source: PubMed

ABSTRACT NEMO (NF-κB essential modulator) associates with the catalytic subunits IKKα and IKKβ to form the IκB kinase (IKK) complex, and is a key regulator of NF-κB pathway signaling. Biochemical and structural characterization of NEMO has been challenging, however, leading to conflicting data on basic biochemical properties such as the oligomeric state of active NEMO and its binding affinity for IKKβ. We show that up to seven of NEMO's 11 cysteine residues can be mutated to generate recombinant full-length NEMO that is highly soluble and active. Using a fluorescence anisotropy binding assay we show that full-length NEMO binds a 44-mer peptide encompassing residues 701-745 of IKKβ with KD = 2.2 ± 0.8 nM. The IKKβ binding affinities of mutants with five and seven Cys-to-Ala substitutions are indistinguishable from that of wild-type NEMO. Moreover, when expressed in NEMO /- fibroblasts, the 5xAla and 7xAla NEMO mutants can interact with cellular IKKβ and restore NF κB signaling to provide protection against TNFα-induced cell death. Treatment of the NEMO-reconstituted cells with H2O2 led to formation of covalent dimers for wild-type NEMO and the 5xAla mutant, but not for the 7xAla mutant, confirming that Cys54 and/or Cys347 can mediate inter-chain disulfide bonding. However, the IKKβ binding affinity of NEMO is unaffected by the presence or absence of inter-chain disulfide bonding at Cys54 - which lies within the IKKβ binding domain of NEMO - or at Cys347, indicating that NEMO exists as a noncovalent dimer independent of the redox state of its cysteines. This conclusion was corroborated by the observation that the secondary structure content of the NEMO, its thermal stability, and its activity in cells were independent of the presence or absence of inter-chain disulfide bonds.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Human NEMO (NF-κB essential modulator) is a 419 residue scaffolding protein that, together with catalytic subunits IKKα and IKKβ, forms the IκB kinase (IKK) complex, a key regulator of NF-κB pathway signaling. NEMO is an elongated homodimer comprising mostly α helix. It has been shown that a NEMO fragment spanning residues 44-111, which contains the IKKα/β binding site, is structurally disordered in the absence of bound IKKβ. Herein we show that enforcing dimerization of NEMO1-120 or NEMO44-111 constructs through introduction of one or two inter-chain disulfide bonds - through oxidation of the native Cys54 residue and/or at position 107 through a Leu107Cys mutation - induces a stable α helical coiled-coil structure that is pre-organized to bind IKKβ with high affinity. Chemical and thermal denaturation studies showed that, in the context of a covalent dimer, the ordered structure was stabilized relative to the denatured state by up to 3 kcal/mol. A full-length NEMO-L107C protein formed covalent dimers upon treatment of mammalian cells with H2O2. Furthermore, NEMO-L107C bound endogenous IKKβ in A293T cells, reconstituted TNF-induced NF κB signaling in NEMO-deficient cells, and interacted with TRAF6. Our results indicate that the IKKβ binding domain of NEMO possesses an ordered structure in the unbound state, provided that it is constrained within a dimer as is the case in the constitutively dimeric full-length NEMO protein. The stability of the NEMO coiled coil is maintained by strong inter-helix interactions in the region centered on residue 54. The disulfide-linked constructs we describe herein may be useful for crystallization of NEMO's IKKβ binding domain in the absence of bound IKKβ, thereby facilitating the structural characterization of small-molecule inhibitors.
    Biochemistry 11/2014; 53(50). DOI:10.1021/bi500920n · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NEMO is a scaffolding protein that, together with the catalytic subunits IKKα and IKKβ, plays an essential role in the formation of the IKK complex and in the activation of the canonical NF-ĸB pathway. Rational drug design targeting the IKK binding site on NEMO would benefit from structural insight, but to date the structure determination of unliganded NEMO has been hindered by protein size and conformational heterogeneity. Here we show how the utilization of a homodimeric coiled-coil adaptor sequence stabilizes the minimal IKK binding domain NEMO(44-111) and furthers our understanding of the structural requirements for IKK binding. The engineered constructs incorporating the coiled-coil at the N-terminus, C-terminus or both ends of NEMO(44-111) present high thermal stability and cooperative melting, and most importantly restore IKKß binding affinity. We examined the consequences on structural content and stability by circular dichoism and nuclear magnetic resonance and measured binding affinity of each construct for IKKβ(701-745) in a fluorescence anisotropy binding assay, allowing us to correlate structural characteristics and stability to binding affinity. Our results provide a method to engineer short stable NEMO constructs to be suitable for structural characterization by NMR or X-ray crystallography. Meanwhile the rescuing of the binding affinity implies that a pre-ordered IKK-binding region of NEMO is compatible with IKK binding and the conformational heterogeneity observed in NEMO(44-111) may be an artifact of the truncation.
    Biochemistry 10/2014; 53(43). DOI:10.1021/bi500861x · 3.38 Impact Factor