Article

Longitudinal sensitivity to change of MRI-based muscle cross-sectional area versus isometric strength analysis in osteoarthritic knees with and without structural progression: pilot data from the Osteoarthritis Initiative.

Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria, .
MAGMA Magnetic Resonance Materials in Physics Biology and Medicine (Impact Factor: 1.35). 11/2013; 27(4). DOI: 10.1007/s10334-013-0418-z
Source: PubMed

ABSTRACT Biomechanical measurement of muscle strength represents established technology in evaluating limb function. Yet, analysis of longitudinal change suffers from relatively large between-measurement variability. Here, we determine the sensitivity to change of magnetic resonance imaging (MRI)-based measurement of thigh muscle anatomical cross sectional areas (ACSAs) versus isometric strength in limbs with and without structural progressive knee osteoarthritis (KOA), with focus on the quadriceps.
Of 625 "Osteoarthritis Initiative" participants with radiographic KOA, 20 had MRI cartilage and radiographic joint space width loss in the right knee isometric muscle strength measurement and axial T1-weighted spin-echo acquisitions of the thigh. Muscle ACSAs were determined from manual segmentation at 33 % femoral length (distal to proximal).
In progressor knees, the reduction in quadriceps ACSA between baseline and 2-year follow-up was -2.8 ± 7.9 % (standardized response mean [SRM] = -0.35), and it was -1.8 ± 6.8 % (SRM = -0.26) in matched, non-progressive KOA controls. The decline in extensor strength was more variable than that in ACSAs, both in progressors (-3.9 ± 20 %; SRM = -0.20) and in non-progressive controls (-4.5 ± 28 %; SRM = -0.16).
MRI-based analysis of quadriceps muscles ACSAs appears to be more sensitive to longitudinal change than isometric extensor strength and is suggestive of greater loss in limbs with structurally progressive KOA than in non-progressive controls.

0 Followers
 · 
152 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The aim of this review is to describe imaging techniques for evaluation of non-osteochondral structures such as the synovium, menisci in the knee, labrum in the hip, ligaments and muscles and to review the literature from recent clinical and epidemiological studies of OA. Methods: This is a non-systematic narrative review of published literature on imaging of non-osteochondral tissues in OA. PubMed and MEDLINE search for articles published up to 2014, using the keywords osteoarthritis, synovitis, meniscus, labrum, ligaments, plica, muscles, magnetic resonance imaging (MRI), ultrasound, computed tomography (CT), scintigraphy, and positron emission tomography (PET). Results: Published literature showed imaging of non-osteochondral tissues in OA relies primarily on MRI and ultrasound. The use of semiquantitative and quantitative imaging biomarkers of non-osteochondral tissues in clinical and epidemiological OA studies is reported. We highlight studies that have compared both imaging methodologies directly, and those that have established a relationship between imaging biomarkers and clinical outcomes. We provide recommendations as to which imaging protocols should be used to assess disease-specific changes regarding synovium, meniscus in the knee, labrum in the hip, and ligaments, and highlight potential pitfalls in their usage. Conclusion: MRI and ultrasound are currently the most useful imaging modalities for evaluation of non-osteochondral tissues in OA. MRI evaluation of any tissue needs to be performed using appropriate MR pulse sequences. Ultrasound may be particularly useful for evaluation of small joints of the hand. Nuclear medicine and CT play a limited role in imaging of non-osteochondral tissues in OA.
    Osteoarthritis and Cartilage 10/2014; 22(10):1590-1605. DOI:10.1016/j.joca.2014.05.001 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arthroscopy-based semiquantitative scoring systems such as Outerbridge and Noyes' scores were the first to be developed for the purpose of grading cartilage defects. As magnetic resonance imaging (MRI) became available faor evaluation of the osteoarthritic knee joint, these systems were adapted for use with MRI. Later on, grading methods such as the Whole Organ Magnetic Resonance Score, the Boston-Leeds Osteoarthritis Knee Score and the MRI Osteoarthritis Knee Score were designed specifically for performing whole-organ assessment of the knee joint structures, including cartilage. Cartilage grades on MRI obtained with these scoring systems represent optimal outcome measures for longitudinal studies, and are designed to enhance understanding of the knee osteoarthritis disease process. The purpose of this narrative review is to describe cartilage assessment in knee osteoarthritis using currently available MRI-based semiquantitative whole-organ scoring systems, and to provide an update on the risk factors for cartilage loss in knee osteoarthritis as assessed with these scoring systems. Key Points • Radiography is neither specific nor sensitive to progression of knee osteoarthritis • Semiquantitative MRI-based outcome measures are useful to identify knee osteoarthritis risk factors • Several MRI-based semiquantitative scoring systems for knee cartilage lesions are available.
    European Radiology 11/2014; 25(3). DOI:10.1007/s00330-014-3464-7 · 4.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To compare cross-sectional and longitudinal side-differences in thigh muscle anatomical cross-sectional areas (ACSAs), muscle strength, and specific strength (strength/ACSA), between knees with early radiographic change vs knees without radiographic knee osteoarthritis (RKOA), in the same person. Design: 55 (of 4796) Osteoarthritis Initiative (OAI) participants fulfilled the inclusion criteria of early RKOA in one limb (definite tibiofemoral osteophytes; no radiographic joint space narrowing [JSN]) vs no RKOA (no osteophyte; no JSN) in the contralateral limb. ACSAs of the thigh muscles and quadriceps heads were determined using axial MRIs at 33%/30% femoral length (distal to proximal). Isometric extensor and flexor muscle strength were measured (Good Strength Chair). Baseline quadriceps ACSA and extensor (specific) strength represented the primary analytic focus, and 2-year changes of quadriceps ACSAs the secondary focus. Results: No statistically significant side-differences in quadriceps (or other thigh muscle) ACSAs, muscle strength, or specific strength were observed between early RKOA vs contralateral limbs without RKOA (P >= 0.44), neither in men nor in women. The 2-year reduction in quadriceps ACSA in limbs with early RKOA was -0.9 +/- 6% (mean +/- standard deviation) vs -0.5 +/- 6% in limbs without RKOA (statistical difference P = 0.85). Conclusion: Our results do not provide evidence that early unilateral radiographic changes, i.e., presence of osteophytes, are associated with cross-sectional or longitudinal differences in quadriceps muscle status compared with contralateral knees without RKOA. At the stage of early unilateral RKOA there thus appears to be no clinical need for countervailing a potential dys-balance in quadriceps ACSAs and strength between both knees.
    Osteoarthritis and Cartilage 10/2014; 22(10):1634-8. DOI:10.1016/j.joca.2014.06.002 · 4.66 Impact Factor