Article

Plant Aquaporins: Roles in Plant Physiology.

Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 11/2013; DOI: 10.1016/j.bbagen.2013.11.004
Source: PubMed

ABSTRACT Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms.
Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts.
In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots.
Plants with genetically altered aquaporin functions are now tested for their ability to improve plant tolerance to stresses. This article is part of a Special Issue entitled Aquaporins.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isohydric plants tend to maintain a water potential homeostasis primarily by controlling water loss via stomatal conductance. However, there is accumulating evidence that plants can also modulate water uptake in a dynamic manner. The dynamics of water uptake are influenced by aquaporin-mediated changes in root hydraulics. Most studies in this area have been conducted on herbaceous plants, and less is known about responses of woody plants. Here a study was conducted to determine how roots of hybrid poplar plants (Populus trichocarpa×deltoides) respond to a step change in transpirational demand. The main objective was to measure the expression of selected aquaporin genes and to assess how transcriptional responses correspond to changes in root water flow (Q R) and other parameters of water relations. A subset of plants was grown in shade and was subsequently exposed to a 5-fold increase in light level. Another group of plants was grown at ~95% relative humidity (RH) and was then subjected to lower RH while the light level remained unchanged. Both plant groups experienced a transient drop in stem water potentials. At 28h after the increase in transpirational demand, water potentials recovered. This recovery was associated with changes in the expression of PIP1 and PIP2 subfamily genes and an increase in Q R. Stomata of plants growing at high RH were larger and showed incomplete closure after application of abscisic acid. Since stomatal conductance remained high and unchanged in these plants, it is suggested that the recovery in water potential in these plants was largely driven by the increase in Q R.
    Journal of Experimental Botany 04/2013; · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The peribacteroid membrane (pbm) of root nodules is derived from the plant cell plasma membrane but contains in addition several nodule-specific host proteins (nodulins). Antibodies raised against purified pbm of soybean were used to immunoprecipitate polysomes to isolate an RNA fraction that served as a template for the synthesis of a cDNA probe for screening a nodule-specific cDNA library. Clone p1B1 was found to encode a 26.5 kDa polypeptide (nodulin-26) which is immunoprecipitable specifically with the anti-pbm serum. Nodulin-26 has features of a transmembrane protein and its structure differs from that of nodulin-24 which appears to be a surface protein of pbm. The expression of these two pbm nodulins was examined in nodules induced by Bradyrhizobium japonicum Tn5 mutants that arrest nodule development at different stages of pbm biosynthesis. Nodules that do not show release of bacteria from the infection thread express nodulin-24 at a very low level. In contrast, the expression of nodulin-26 occurs fully in nodules that form infection threads only and is not affected by the release of bacteria from the threads.
    Nucleic Acids Research 02/1987; 15(2):813-24. · 8.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vacuolar membrane protein alpha-TIP is a seed-specific protein of the Major Intrinsic Protein family. Expression of alpha-TIP in Xenopus oocytes conferred a 4- to 8-fold increase in the osmotic water permeability (Pf) of the oocyte plasma membrane, showing that alpha-TIP forms water channels and is thus a new aquaporin. alpha-TIP has three putative phosphorylation sites on the cytoplasmic side of the membrane (Ser7, Ser23 and Ser99), one of which (Ser7) has been shown to be phosphorylated. We present several lines of evidence that the activity of this aquaporin is regulated by phosphorylation. First, mutation of the putative phosphorylation sites in alpha-TIP (Ser7Ala, Ser23Ala and Ser99Ala) reduced the apparent water transport activity of alpha-TIP in oocytes, suggesting that phosphorylation of alpha-TIP occurs in the oocytes and participates in the control of water channel activity. Second, exposure of oocytes to the cAMP agonists 8-bromoadenosine 3',5'-cyclic monophosphate, forskolin and 3-isobutyl-1-methylxanthine, which stimulate endogenous protein kinase A (PKA), increased the water transport activity of alpha-TIP by 80-100% after 60 min. That the protein can be phosphorylated by PKA was demonstrated by phosphorylating alpha-TIP in isolated oocyte membranes with the bovine PKA catalytic subunit. Third, the integrity of the three sites at positions 7, 23 and 99 was necessary for the cAMP-dependent increase in the Pf of oocytes expressing alpha-TIP, as well as for in vitro phosphorylation of alpha-TIP. These findings demonstrate that the alpha-TIP water channel can be modulated via phosphorylation of Ser7, Ser23 and Ser99.(ABSTRACT TRUNCATED AT 250 WORDS)
    The EMBO Journal 08/1995; 14(13):3028-35. · 9.82 Impact Factor