Integrated Expression Profiles of mRNA and miRNA in Polarized Primary Murine Microglia

Massachusetts General Hospital and Harvard Medical School, United States of America
PLoS ONE (Impact Factor: 3.23). 11/2013; 8(11):e79416. DOI: 10.1371/journal.pone.0079416
Source: PubMed


Neuroinflammation contributes to many neurologic disorders including Alzheimer's disease, multiple sclerosis, and stroke. Microglia is brain resident myeloid cells and have emerged as a key driver of the neuroinflammatory responses. MicroRNAs (miRNAs) provide a novel layer of gene regulation and play a critical role in regulating the inflammatory response of peripheral macrophages. However, little is known about the miRNA in inflammatory activation of microglia. To elucidate the role that miRNAs have on microglial phenotypes under classical (M1) or alternative (M2) activation under lipopolysaccharide ('M1'-skewing) and interleukin-4 ('M2a'-skewing) stimulation conditions, we performed microarray expression profiling and bioinformatics analysis of both mRNA and miRNA using primary cultured murine microglia. miR-689, miR-124, and miR-155 were the most strongly associated miRNAs predicted to mediate pro-inflammatory pathways and M1-like activation phenotype. miR-155, the most strongly up-regulated miRNA, regulates the signal transducer and activator of transcription 3 signaling pathway enabling the late phase response to M1-skewing stimulation. Reduced expression in miR-689 and miR-124 are associated with dis-inhibition of many canonical inflammatory pathways. miR-124, miR-711, miR-145 are the strongly associated miRNAs predicted to mediate anti-inflammatory pathways and M2-like activation phenotype. Reductions in miR-711 and miR-124 may regulate inflammatory signaling pathways and peroxisome proliferator-activated receptor-gamma pathway. miR-145 potentially regulate peripheral monocyte/macrophage differentiation and faciliate the M2-skewing phenotype. Overall, through combined miRNA and mRNA expression profiling and bioinformatics analysis we have identified six miRNAs and their putative roles in M1 and M2-skewing of microglial activation through different signaling pathways.

Download full-text


Available from: Tsuneya Ikezu, Aug 14, 2014
  • Source
    • "Moreover, decreased miR-124 and miR-155 that revealed a negative correlation with age (Fichtlscherer et al., 2010; Noren Hooten et al., 2010; Smith-Vikos and Slack, 2012), parallelled by the enhanced miR-146a expression, further reinforce that 16 DIV microglia mainly represent aged-like microglia. In addition the reduced miR-124 obtained in these cells, indicated as being associated to the M2a-alternatively activated state (Freilich et al., 2013) and to inhibit inflammation (Prinz and Priller, 2014), strengthen their dormant/senescent phenotype. In contrast, the predominant amoeboid morphology together with increased NF-κB activation, cell migration, phagocytosis and the higher levels of miR-155 expression in 2 DIV microglia, as compared with aged cells, are indicative of a major representation of cells with a stressed/reactive phenotype. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related neurodegenerative diseases have been associated with chronic neuroinflammation and microglia activation. However, cumulative evidence supports that inflammation only occurs at an early stage once microglia change the endogenous characteristics with ageing and switch to irresponsive/senescent and dystrophic phenotypes with disease progression. Thus, it will be important to have the means to assess the role of reactive and aged microglia when studying advanced brain neurodegeneration processes and age-associated related disorders. Yet, most studies are done with microglia from neonates since there are no adequate means to isolate degenerating microglia for experimentation. Indeed, only a few studies report microglia isolation from aged animals, using either short-term cultures or high concentrations of mitogens in the medium, which trigger microglia reactivity. The purpose of this study was to develop an experimental process to naturally age microglia after isolation from neonatal mice and to characterize the cultured cells at 2 days in vitro (DIV), 10 DIV and 16 DIV. We found that 2 DIV (young) microglia had predominant amoeboid morphology and markers of stressed/reactive phenotype. In contrast, 16 DIV (aged) microglia evidenced ramified morphology and increased metalloproteinase (MMP)-2 activation, as well as reduced MMP-9, glutamate release and nuclear factor kappa-B activation, in parallel with decreased expression of Toll-like receptor (TLR)-2 and TLR-4, capacity to migrate and phagocytose. These findings together with the reduced expression of microRNA (miR)-124, and miR-155, decreased autophagy, enhanced senescence associated beta-galactosidase activity and elevated miR-146a expression, are suggestive that 16 DIV cells mainly correspond to irresponsive/senescent microglia. Data indicate that the model represent an opportunity to understand and control microglial aging, as well as to explore strategies to recover microglia surveillance function.
    Frontiers in Cellular Neuroscience 06/2014; 8:152. DOI:10.3389/fncel.2014.00152 · 4.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia are unique cells within the central nervous system because of their biophysical independence. As a result of this unusual property the cells must undergo significant structural remodelling in order to engage and connect with other elements within the central nervous system. Efficient remodelling is required for all activities that microglia are involved in ranging from monitoring synaptic information flow through to phagocytosis of tissue debris. Despite the fact that morphological remodelling is a pre-requisite to all microglial activities, relatively little research has been undertaken on the topic. This review examines what is known about how microglia transform themselves during development, under physiological conditions in response to changes in neuronal activity, and under pathological circumstances. Specific attention is given to exploring a variety of models that have been proposed to account for microglial transformation as well as the signals that are known to trigger these transformations.
    Brain Behavior and Immunity 01/2014; 37. DOI:10.1016/j.bbi.2013.12.010 · 5.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Laquinimod is an emerging oral medication for multiple sclerosis (MS) that reduces brain atrophy and progression of disability in two Phase III clinical trials. The mechanism of these effects is unclear. Persistent activation of microglia occurs in MS and contributes to injury. Thus, we investigated whether laquinimod alters properties of microglia in culture and in experimental autoimmune encephalomyelitis (EAE), and whether this reduces neurodegeneration.Methods Microglia were cultured from human brains. EAE was induced in mice.ResultsThe activation of human microglia increased levels of several pro- and anti-inflammatory cytokines and these elevations were attenuated by pretreatment with laquinimod. Laquinimod prevented the decline in activated microglia of miR124a, a microRNA implicated in maintaining microglia quiescence, and reduced the activity of several signaling pathways (Jun-N-terminal kinase, ribosomal S6 kinase, and AKT/protein kinase B) in activated microglia. In EAE, axonal injury correlated with accumulation of microglia/macrophages in the spinal cord. EAE mice treated with laquinimod before onset of clinical signs subsequently had reduced microglia/macrophage density and axonal injury. Remarkably, when laquinimod treatment was initiated well into the disease course, the progressive demyelination, and axonal loss was halted. Besides inflammatory molecules associated with microglia, the level of inducible nitric oxide (NO) synthase capable of producing free radical toxicity was attenuated by laquinimod in EAE mice. Finally, in coculture where microglia activation caused neuronal death, laquinimod decreased NO levels, and neurotoxicity.InterpretationLaquinimod is a novel inhibitor of microglial activation that lowers microglia-induced neuronal death in culture and axonal injury/loss in EAE.
    06/2014; DOI:10.1002/acn3.67
Show more