α-Crystallin Modulates its Chaperone Activity by Varying the Exposed Surface

Istituto di Fisica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Roma, RM, 00168 (Italy).
ChemBioChem (Impact Factor: 3.09). 11/2013; 14(17). DOI: 10.1002/cbic.201300447
Source: PubMed


The α-crystallin family of small heat shock proteins possesses chaperone activity in response to stress and is involved in several neurological, muscular, and ophthalmic pathologies. This family includes the vertebrate lens protein α-crystallin, associated with cataract disease. In this study, by combining small-angle X-ray and light scattering techniques, the structure and shape of α-crystallin was revealed in its native state and after a transition caused by heat stress. Below critical temperature (Tc ), α-crystallin appears as an ellipsoid with a central cavity; whereas at high temperatures the cavity almost disappears, and the protein rearranges its structure, increasing the solvent-exposed surface while retaining the ellipsoidal symmetry. Contextually, at Tc , α-crystallin chaperone binding shows an abrupt increase. By modelling the chaperone activity as the formation of a complex composed of α-crystallin and an aggregating substrate, it was demonstrated that the increase of α-crystallin-exposed surface is directly responsible for its gain in chaperone functionality.

Download full-text


Available from: Massimiliano Papi, Oct 14, 2015
18 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Provenance awareness adds a new dimension to the engineering of service-oriented systems, requiring them to be able to answer questions about the provenance of any data produced. This need is even more evident where atomic services are aggregated into added-value composite services to be delivered with certain non-functional characteristics. Prior work in the area of provenance for service-oriented systems has primarily focused on the collection and storage infrastructure required for answering provenance questions. In contrast, in this paper we study the structure of the data thus collected considering the service's infrastructure as a whole and how this affects provenance collection for answering different types of provenance questions. In particular, we define an extension of W3Cs PROV ontological model with concepts that can be used to express the provenance of how services were discovered, selected, aggregated and executed. We demonstrate the conceptual adequacy of our model by reasoning over provenance instances for a composite service scenario.
    2014 IEEE 8th International Symposium on Service Oriented System Engineering (SOSE); 04/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structural properties of α-crystallin, the major protein of the eye lens of mammals, in aqueous solution are investigated by means of Small Angle X-ray and Dynamic Light Scattering. The research interest is devoted in particular to the effect of carnosine in protecting the protein under stress conditions, like temperature increase and presence of denaturant (guanidinium-HCl). The results suggest that carnosine interacts, through mechanisms involving hydrophobic interactions, with α-crystallin and avoids the structural changes in the quaternary structure induced by thermal and chemical stress. It is also shown that, if mediated by carnosine, the self-aggregation of α-crystallin induced by the denaturant at higher temperature can be controlled and even partially reversed. Therefore, carnosine is effective in preserving the structural integrity of the protein, suggesting the possibility of new strategies of intervention for preventing or treating pathologies related to protein aggregation, like cataract.
    The Journal of Physical Chemistry B 10/2014; 118(47). DOI:10.1021/jp5092009 · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultraviolet radiation is a risk factor for cataractogenesis. It is believed that enhanced rates of lens opacification and cataract formation are the results of gradual loss of chaperone-like efficiency of α-crystallin upon exposure to UV light. To characterize chaperone-like activity of α-crystallin damaged by UV irradiation, a test system based on dithiothreitol-induced aggregation of holo-α-lactalbumin from bovine milk was used. The adsorption capacity of α-crystallin (AC0) with respect to the target protein (α-lactalbumin) was used as a measure of anti-aggregation activity of α-crystallin. The data on SDS-PAGE testify that UV irradiation of α-crystallin results in covalent cross-linking of subunits in α-crystallin oligomers. The dependence of AC0 value on the irradiation dose was compared with the UV-induced diminution of the portion of native α-crystallin estimated from the data on differential scanning calorimetry. On the basis of such comparison a conclusion has been made that the loss in chaperone-like activity is mainly due to UV-induced denaturation of α-crystallin subunits. Cross-linking of remaining native subunits leads to an additional decrease in anti-aggregation activity.
    International Journal of Biological Macromolecules 11/2014; 73. DOI:10.1016/j.ijbiomac.2014.10.060 · 2.86 Impact Factor