PNPLA3-Associated Steatohepatitis: Toward a Gene-Based Classification of Fatty Liver Disease

Department of Medicine II, Saarland University Medical Center, Homburg, Germany.
Seminars in Liver Disease (Impact Factor: 5.12). 11/2013; 33(4):369-79. DOI: 10.1055/s-0033-1358525
Source: PubMed

ABSTRACT Nonalcoholic fatty liver disease is one of the most common hepatic disorders worldwide. Given the high-calorie nutrition of children and adults, nonalcoholic fatty liver disease (NAFLD) is expected to become a major cause of cirrhosis and eventually liver transplantation. Familial clustering and ethnic differences indicate that genetic factors contribute to NAFLD. Recently, the common variant p.I148M of the enzyme adiponutrin (PNPLA3) has emerged as a major genetic determinant of hepatic steatosis and nonalcoholic steatohepatitis as well as its pathobiological sequelae fibrosis, cirrhosis, and hepatocellular cancer. PNPLA3 encodes a lipid droplet-associated, carbohydrate-regulated lipogenic and/or lipolytic enzyme. Homozygous carriers of the PNPLA3 variant are prone to develop cirrhosis in the absence of other risk factors such as alcohol or viral hepatitis. Here we review the plethora of studies that unraveled the association between PNPLA3 and NAFLD in children and adults, discuss its distinct effects on liver and metabolic traits, and introduce the term PNPLA3-associated steatohepatitis (PASH) as a novel gene-based liver disease. Given the prevalence of the risk allele in 40 to 50% of Europeans, the authors conclude that PNPLA3 should be considered in the diagnostic workup of fatty liver disease and that homozygous risk allele carriers might benefit from careful cancer surveillance.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of hepatic histopathological changes ranging from non-inflammatory intracellular fat deposition to non-alcoholic steatohepatitis (NASH), which may progress into hepatic fibrosis, cirrhosis, or hepatocellular carcinoma. NAFLD hallmark is the excessive hepatic accumulation of neutral lipids that result from an imbalance between lipid availability and lipid removal. Recent data suggest that disturbed hepatic cholesterol homeostasis and liver free cholesterol (FC) accumulation are relevant to the pathogenesis of NAFLD/NASH. Hepatic FC accumulation in NAFLD result from alterations in intracellular cholesterol transport and from unbalanced cellular cholesterol homeostasis characterized by activation of cholesterol biosynthetic pathways, increased cholesterol de-esterification and attenuation of cholesterol export and bile acid synthesis pathways. FC accumulation leads to liver injury through the activation of intracellular signaling pathways in Kupffer cells (KC), Stellate cells (HSC) and hepatocytes. The activation of KC and HSC promotes inflammation and fibrogenesis. In addition, FC accumulation in liver mitochondria induces mitochondrial dysfunction, which results in increasing production of reactive oxygen species, and triggers the unfolded protein response in the endoplasmic reticulum (ER) causing ER stress and apoptosis. These events create a vicious circle that contributes to the maintenance of steatosis and promotes ongoing hepatocyte death and liver damage, which in turn may translate into disease progression. In the present review we summarize current knowledge on dysregulated cholesterol homeostasis in NAFLD and examine the cellular mechanisms of hepatic FC toxicity and its contribution to ongoing liver injury in this disease. The therapeutic implications of this knowledge are also discussed. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta 05/2015; DOI:10.1016/j.bbadis.2015.05.015 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept is emerging that low-normal thyroid function, i.e., either higher thyroid-stimulating hormone or lower free thyroxine levels within the euthyroid reference range, could contribute to the development of atherosclerotic cardiovascular disease. It is possible that adverse effects of low-normal thyroid function on cardiovascular outcome may be particularly relevant for specific populations, such as younger people and subjects with high cardiovascular risk. Low-normal thyroid function probably relates to modest increases in plasma total cholesterol, low density lipoprotein cholesterol, triglycerides and insulin resistance, but effects on high density lipoprotein (HDL) cholesterol and non-alcoholic fatty liver disease are inconsistent. Low-normal thyroid function may enhance plasma cholesteryl ester transfer, and contribute to an impaired ability of HDL to inhibit oxidative modification of LDL, reflecting pro-atherogenic alterations in lipoprotein metabolism and HDL function, respectively. Low-normal thyroid function also confers lower levels of bilirubin, a strong natural anti-oxidant. Remarkably, all these effects of low-normal thyroid functional status appear to be more outspoken in the context of chronic hyperglycemia and/or insulin resistance. Collectively, these data support the concept that low-normal thyroid function may adversely affect several processes which conceivably contribute to the pathogenesis of atherosclerotic cardiovascular disease, beyond effects on conventional lipoprotein measures.
    Nutrients 02/2015; 7(2):1352-77. DOI:10.3390/nu7021352 · 3.15 Impact Factor
  • Source
    Journal of Hepatology 01/2015; 62(4). DOI:10.1016/j.jhep.2014.10.048 · 10.40 Impact Factor