Article

Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs.

1] Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, California, USA. [2] Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
Nature medicine (Impact Factor: 28.05). 11/2013; DOI: 10.1038/nm.3282
Source: PubMed

ABSTRACT Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are believed to be the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not been developed. We report that Cre under control of the promoter of Pdgfrb (Pdgfrb-Cre) inactivates loxP-flanked genes in mouse HSCs with high efficiency. We used this system to delete the gene encoding αv integrin subunit because various αv-containing integrins have been suggested as central mediators of fibrosis in multiple organs. Such depletion protected mice from carbon tetrachloride-induced hepatic fibrosis, whereas global loss of β3, β5 or β6 integrins or conditional loss of β8 integrins in HSCs did not. We also found that Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of the αv integrin subunit using this system was protective in other models of organ fibrosis, including pulmonary and renal fibrosis. Pharmacological blockade of αv-containing integrins by a small molecule (CWHM 12) attenuated both liver and lung fibrosis, including in a therapeutic manner. These data identify a core pathway that regulates fibrosis and suggest that pharmacological targeting of all αv integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases.

0 Bookmarks
 · 
121 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Integrin-mediated force application induces a conformational change in latent TGF-β1 that leads to the release of the active form of the growth factor from the extracellular matrix (ECM). Mechanical activation of TGF-β1 is currently understood as an acute process that depends on the contractile force of cells. However, we show that ECM remodeling, preceding the activation step, mechanically primes latent TGF-β1 akin to loading a mechanical spring. Cell-based assays and unique strain devices were used to produce a cell-derived ECM of controlled organization and prestrain. Mechanically conditioned ECM served as a substrate to measure the efficacy of TGF-β1 activation after cell contraction or direct force application using magnetic microbeads. The release of active TGF-β1 was always higher from prestrained ECM as compared with unorganized and/or relaxed ECM. The finding that ECM prestrain regulates the bioavailability of TGF-β1 is important to understand the context of diseases that involve excessive ECM remodeling, such as fibrosis or cancer.
    The Journal of Cell Biology 10/2014; · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patients with chronic liver disease, portal hypertension is driven by progressive fibrosis and intrahepatic vasoconstriction. Interruption of the initiating and perpetuating etiology-mostly leading to necroinflammation-is possible for several underlying causes, such as autoimmune hepatitis, hepatitis B virus (HBV) infection, and most recently hepatitis C virus (HCV) infection. Thus, in the long run, lifestyle-related liver damage due to chronic alcoholism or morbid obesity will remain the main factor leading to portal hypertension. Both causes are probably more easily countered by socioeconomic measures than by individual approaches. If chronic liver injury supporting fibrogenesis and portal hypertension cannot be interrupted, a wide variety of tools are available to modulate and reduce intrahepatic resistance and therewith portal hypertension. Many of these have been evaluated in animal models. Also, some well-established drugs, which are used in humans for other indications (for example, statins), are promising if applied early and concomitantly to standard therapy. In the future, more individually tailored strategies must also be considered in line with the spectrum of portal hypertensive complications and risk factors defined by high-throughput analysis of the patient's genome, transcriptome, metabolome, or microbiome.
    F1000prime reports. 10/2014; 6:95.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanomedicine constitutes the emerging field of medical applications for nanotechnology such as nanomaterial-based drug delivery systems. This technology may hold exceptional potential for novel therapeutic approaches to liver diseases. The specific and unspecific targeting of macrophages, hepatic stellate cells (HSC), hepatocytes, and liver sinusoidal endothelial cells (LSEC) using nanomedicine has been developed and tested in preclinical settings. These four major cell types in the liver are crucially involved in the complex sequence of events that occurs during the initiation and maintenance of liver inflammation and fibrosis. Targeting different cell types can be based on their capacity to ingest surrounding material, endocytosis, and specificity for a single cell type can be achieved by targeting characteristic structures such as receptors, sugar moieties or peptide sequences. Macrophages and especially the liver-resident Kupffer cells are in the focus of nanomedicine due to their highly efficient and unspecific uptake of most nanomaterials as well as due to their critical pathogenic functions during inflammation and fibrogenesis. The mannose receptor enables targeting macrophages in liver disease, but macrophages can also become activated by certain nanomaterials, such as peptide-modified gold nanorods (AuNRs) that render them proinflammatory. HSC, the main collagen-producing cells during fibrosis, are currently targeted using nanoconstructs that recognize the mannose 6-phosphate and insulin-like growth factor II, peroxisome proliferator activated receptor 1, platelet-derived growth factor (PDGF) receptor β, or integrins. Targeting of the major liver parenchymal cell, the hepatocyte, has only recently been achieved with high specificity by mimicking apolipoproteins, naturally occurring nanoparticles of the body. LSEC were found to be targeted most efficiently using carboxy-modified micelles and their integrin receptors. This review will summarize important functions of these cell types in healthy and diseased livers and discuss current strategies of cell-specific targeting for liver diseases by nanomedicine.
    Hepatobiliary surgery and nutrition. 12/2014; 3(6):364-76.

Full-text (3 Sources)

Download
54 Downloads
Available from
Jun 10, 2014