Article

Evaluation of changes in retinal nerve fiber layer thickness and visual functions in cases of optic neuritis and multiple sclerosis

Neuro-Ophthalmology Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
Indian Journal of Ophthalmology (Impact Factor: 0.93). 10/2013; 61(10):562-6. DOI: 10.4103/0301-4738.121071
Source: PubMed

ABSTRACT Context: Retinal nerve fiber layer (RNFL) thinning has been demonstrated in cases of optic neuritis (ON) and multiple sclerosis (MS) in Caucasian eyes, but no definite RNFL loss pattern or association with visual functions is known in Indian eyes. Aim : To evaluate RNFL thickness in cases of ON and MS, and to correlate it with visual function changes in Indian patients. Settings and Design: Cross-sectional case-control study at a tertiary level institution . Materials and Methods: Cases consisted of patients of (i) typical ON without a recent episode (n = 30:39 ON eyes and 21 fellow eyes), (ii) MS without ON (n = 15;30 eyes) while the controls were age-matched (n = 15; 30 eyes). RNFL thickness was measured using the Stratus 3 °CT. The visual functions tested included the best-corrected visual acuity (BCVA), contrast sensitivity, stereopsis, visual evoked responses, and visual fields. Statistical analysis used: Intergroup analysis was done using ANOVA and Pearson's correlation coefficient used for associations. Results: RNFL thickness was reduced significantly in the ON and MS patients compared to the controls (P-0.001). Maximum loss is in the temporal quadrant. Lower visual function scores are associated with reduced average overall RNFL thickness. In ON group, RNFL thinning is associated with severe visual field defects while contrast sensitivity has strongest correlation with RNFL in the MS group. Conclusions:RNFL thickness is reduced in ON and MS cases in a pattern similar to Caucasians and is associated with the magnitude of impairment of other visual parameters. Contrast sensitivity and stereoacuity are useful tests to identify subclinical optic nerve involvement in multiple sclerosis.

1 Follower
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the peripapillary retinal nerve fiber layer thickness with optical coherence tomography in epileptic children receiving valproic acid monotherapy. The study was conducted on children aged 8-16 years who were undergoing valproic acid monotherapy for epilepsy. The study group comprised a total of 40 children who met the inclusion criteria and 40 healthy age- and sex-matched children as a control group. Children with at least a 1-year history of epilepsy and taking 10-40 mg/kg/day treatment were included in the study. Peripapillary retinal nerve fiber layer thickness measurements were performed using Cirrus HD optical coherence tomography. All children and parents were informed about the study and informed consent was obtained from the parents of all the participants. The study group included 21 girls and 19 boys with a mean age of 10.6 ± 2.3 years. According to the results of optical coherence tomography measurements, the mean peripapillary retinal nerve fiber layer thickness was 91.6 ± 9.7 in the patient group and 95.5 ± 7.4 μm in the control group (P < 0.05). The superior peripapillary retinal nerve fiber layer thickness was 112.0 ± 13.2 in the patient group and 120.0 ± 14.7 μm in the control group (P < 0.02). According to the results of both measurements, the peripapillary retinal nerve fiber layer thickness was significantly lower in the patient group. Neither color vision loss nor visual field examination abnormality could be documented. According to the optical coherence tomography measurements, the average and superior peripapillary retinal nerve fiber layer thicknesses were thinner in patients with epilepsy who were receiving valproic acid monotherapy compared with healthy children. This situation can lead to undesirable results in terms of eye health. New studies are needed to investigate whether these findings are the result of epilepsy or can be attributed to valproic acid and whether there are adverse effects of valproic acid later in life. Copyright © 2015 Elsevier Inc. All rights reserved.
    Pediatric Neurology 02/2015; DOI:10.1016/j.pediatrneurol.2015.02.016 · 1.50 Impact Factor
  • Source