Article

Ultrathin Silicon Membranes for Wearable Dialysis

Department of Biomedical Engineering, University of Rochester, Rochester, NY. Electronic address: .
Advances in Chronic Kidney Disease (Impact Factor: 1.94). 01/2013; 20(6):508-15. DOI: 10.1053/j.ackd.2013.08.001
Source: PubMed

ABSTRACT The development of wearable or implantable technologies that replace center-based hemodialysis (HD) hold promise to improve outcomes and quality of life for patients with ESRD. A prerequisite for these technologies is the development of highly efficient membranes that can achieve high toxin clearance in small-device formats. Here we examine the application of the porous nanocrystalline silicon (pnc-Si) to HD. pnc-Si is a molecularly thin nanoporous membrane material that is orders of magnitude more permeable than conventional HD membranes. Material developments have allowed us to dramatically increase the amount of active membrane available for dialysis on pnc-Si chips. By controlling pore sizes during manufacturing, pnc-Si membranes can be engineered to pass middle-molecular-weight protein toxins while retaining albumin, mimicking the healthy kidney. A microfluidic dialysis device developed with pnc-Si achieves urea clearance rates that confirm that the membrane offers no resistance to urea passage. Finally, surface modifications with thin hydrophilic coatings are shown to block cell and protein adhesion.

Download full-text

Full-text

Available from: Dean G Johnson, Jul 03, 2015
4 Followers
 · 
134 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Die Mortalität chronischer Dialysepatienten übersteigt nach wie vor die vergleichbarer nierengesunder oder nierentransplantierter Menschen deutlich. Neue oder verbesserte Behandlungsverfahren zielen darauf ab, die Nierenersatztherapie an die physiologischen Verhältnisse einer gesunden Niere anzunähern.Übersicht über den Entwicklungsstand im Bereich neuer Technologien und Verfahren der Nierenersatzverfahren.Literatur-Review; subjektive Auswahl des Autors.Die Online-Hämodiafiltration hat das HDF-Verfahren sicher und kostengünstiger gemacht; der Beweis einer Überlegenheit der Methode gegenüber konventioneller High-flux-Dialyse bezüglich der Mortalität steht aber auch nach den drei großen randomisierten kontrollierten Studien aus. Bei der Entwicklung tragbarer Hämodialysesysteme für eine kontinuierliche Therapie werden Fortschritte in der Adsorbertechnologie für die technische Umsetzung von Bedeutung sein. Mit der Entwicklung in nanotechnologischen Verfahren hergestellter ultradünner Silikonmembranen mit schlitzförmiger Porenstruktur ergeben sich neue Möglichkeiten einer hocheffektiven Clearance kleinmolekularer Stoffe bis hin zu Mittelmolekülen mit viel höherer Selektivität als mit bisherigen High-flux-Membranen. Die Weiterentwicklungen dieser Membrantechnologie zielen auf eine kostengünstigere Produktion in größeren Serien und eine Oberflächenverbesserung zur Senkung von Thrombogenität und Proteinadhäsion. Erste vielversprechende Daten deuten auf eine verbesserte Überlebensrate bei Patienten mit akutem Nierenversagen und Sepsis hin, die mit CVVH und einem in Reihe geschalteten, mit renalen Tubuluszellen beschichteten Hämofilter unter regionaler Zitratantikoagulation behandelt werden (SCD).
    Der Nephrologe 03/2014; 9(2). DOI:10.1007/s11560-013-0819-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microfluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream. Here we demonstrate a chemotaxis system in which two chambers are separated by a molecularly thin (15 nm), transparent, and nanoporous silicon membrane. One chamber is a microfluidic channel that carries a flow-generated gradient while the other chamber is a shear-free environment for cell observation. The molecularly thin membranes provide effectively no resistance to molecular diffusion between the two chambers, making them ideal elements for creating flow-free chambers in microfluidic systems. Analytical and computational flow models that account for membrane and chamber geometry, predict shear reduction of more than five orders of magnitude. This prediction is confirmed by observing the pure diffusion of nanoparticles in the cell-hosting chamber despite high input flow (Q = 10 μL min(-1); vavg ~ 45 mm min(-1)) in the flow chamber only 15 nm away. Using total internal reflection fluorescence (TIRF) microscopy, we show that a flow-generated molecular gradient will pass through the membrane into the quiescent cell chamber. Finally we demonstrate that our device allows us to expose migrating neutrophils to a chemotactic gradient or fluorescent label without any influence from flow.
    Lab on a Chip 05/2014; 14(14). DOI:10.1039/c4lc00326h · 5.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The extraordinary permeability and manufacturability of ultrathin silicon-based membranes are enabling devices with improved performance and smaller sizes in such important areas as molecular filtration and sensing, cell culture, electroosmotic pumping, and hemodialysis. Because of the robust chemical and mechanical properties of silicon nitride (SiN), several laboratories have developed techniques for patterning nanopores in SiN using reactive ion etching (RIE) through a template structure. These methods however, have failed to produce pores small enough for ultrafiltration (< 100 nm) in SiN and involve templates that are prone to microporous defects. Here we present a facile, wafer-scale method to produce nanoporous silicon nitride (NPN) membranes using porous nanocrystalline silicon (pnc-Si) as a self-assembling, defect free, RIE masking layer. By modifying the mask layer morphology and the RIE etch conditions, the pore sizes of NPN can be adjusted between 40 nm and 80 nm with porosities reaching 40%. The resulting NPN membranes exhibit higher burst pressures than pnc-Si membranes while having 5x greater permeability. NPN membranes also demonstrate the capacity for high resolution separations (< 10 nm) seen previously with pnc-Si membranes. We further demonstrate that human endothelial cells can be grown on NPN membranes, verifying the biocompatibility of NPN and demonstrating the potential of this material for cell culture applications.
    Nanoscale 07/2014; 6(18). DOI:10.1039/C4NR03070B · 6.74 Impact Factor
Show more