Article

Genome-wide association analysis identifies 13 new risk loci for schizophrenia.

1] Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [3].
Nature Genetics (Impact Factor: 29.65). 10/2013; DOI: 10.1038/ng.2742

ABSTRACT Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.

0 Bookmarks
 · 
313 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last few years, genetics research has made significant strides in identifying many risk factors for schizophrenia and bipolar disorder. These risk factors include inherited common single nucleotide polymorphisms, copy number variants, and rare single nucleotide variants, as well as rare de novo variants. For all variants, the common theme has been that of polygenicity, meaning that many small genetic risk factors influence risk in the population and that no gene or variant on its own has been shown to be fully deterministic of schizophrenia or bipolar. When taken together, biological themes that have emerged including the importance of synaptic function and calcium signaling. This has implications for our understanding of the biological underpinnings of these diseases. Copyright © 2014. Published by Elsevier Ltd.
    Current Opinion in Neurobiology 12/2014; 30C:131-138. DOI:10.1016/j.conb.2014.12.001 · 6.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studying how genetic predispositions come together with environmental factors to contribute to complex behavioral outcomes has great potential for advancing our understanding of the development of psychopathology. It represents a clear theoretical advance over studying these factors in isolation. However, research at the intersection of multiple fields creates many challenges. We review several reasons why the rapidly expanding candidate gene-environment interaction (cGxE) literature should be considered with a degree of caution. We discuss lessons learned about candidate gene main effects from the evolving genetics literature and how these inform the study of cGxE. We review the importance of the measurement of the gene and environment of interest in cGxE studies. We discuss statistical concerns with modeling cGxE that are frequently overlooked. And we review other challenges that have likely contributed to the cGxE literature being difficult to interpret, including low power and publication bias. Many of these issues are similar to other concerns about research integrity (e.g., high false positive rates) that have received increasing attention in the social sciences. We provide recommendations for rigorous research practices for cGxE studies that we believe will advance its potential to contribute more robustly to the understanding of complex behavioral phenotypes.
    Perspectives on Psychological Science 01/2015; 10(1):37-59. DOI:10.1177/1745691614556682 · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizotypy refers to a constellation of personality traits that are believed to mirror the subclinical expression of schizophrenia in the general population. Evidence from pharmacological studies indicates that dopamine (DA) is involved in the etiology of schizophrenia. Based on the assumption of a continuum between schizophrenia and schizotypy, researchers have begun investigating the association between DA and schizotypy using a wide range of methods. In this article, we review published studies on this association from the following areas of work: (1) experimental investigations of the interactive effects of dopaminergic challenges and schizotypy on cognition, motor control, and behavior (2), dopaminergically supported cognitive functions (3), studies of associations between schizotypy and polymorphisms in genes involved in dopaminergic neurotransmission, and (4) molecular imaging studies of the association between schizotypy and markers of the DA system. Together, data from these lines of evidence suggest that DA is important to the expression and experience of schizotypy and associated behavioral biases. An important observation is that the experimental designs, methods, and manipulations used in this research are highly heterogeneous. Future studies are required to replicate individual observations, to enlighten the link between DA and different schizotypy dimensions (positive, negative, cognitive disorganization), and to guide the search for solid DA-sensitive behavioral markers. Such studies are important in order to clarify inconsistencies between studies. More work is also needed to identify differences between dopaminergic alterations in schizotypy compared to the dysfunctions observed in schizophrenia.
    Frontiers in Psychiatry 12/2014; 5:184. DOI:10.3389/fpsyt.2014.00184

Full-text (2 Sources)

Download
28 Downloads
Available from
Dec 22, 2014