Crystallization of the Large Membrane Protein Complex Photosystem I in a Microfluidic Channel

ACS Nano (Impact Factor: 12.03). 11/2013; 7(12). DOI: 10.1021/nn402515q
Source: PubMed

ABSTRACT Traditional macroscale protein crystallization is accomplished non-trivially by exploring a range of protein concentrations and buffers in solution until a suitable combination is attained. This methodology is time consuming and resource intensive hindering protein structure determination. Even more difficulties arise when crystallizing large membrane protein complexes such as photosystem I (PSI) due to their large unit cells dominated by solvent and complex characteristics that call for even stricter buffer requirements. Structure determination techniques tailored for these 'difficult to crystallize' proteins such as femtosecond nanocrystallography are being developed, yet still need specific crystal characteristics. Here, we demonstrate a simple and robust method to screen protein crystallization conditions at low ionic strength in a microfluidic device. This is realized in one microfluidic experiment using low sample amounts, unlike traditional methods where each solution condition is setup separately. Second harmonic generation microscopy via Second Order Nonlinear Imaging of Chiral Crystals (SONICC) was applied for the detection of nanometer and micrometer sized PSI crystals within microchannels. To develop the crystallization phase diagram, crystals imaged with SONICC at specific channel locations were correlated to protein and salt concentrations determined by numerical simulations of the time-dependent diffusion process along the channel. Our method demonstrated that a portion of the PSI crystallization phase diagram could be reconstructed in excellent agreement with crystallization conditions determined by traditional methods. We postulate that this approach could be utilized to efficiently study and optimize crystallization conditions for a wide range of proteins that are poorly understood to date.

  • [Show abstract] [Hide abstract]
    ABSTRACT: An improved structural model of the photosystem I complex from the thermophilic cyanobacterium Synechococcus elongatus is described at 4 A resolution. This represents the most complete model of a photosystem presently available, uniting both a photosynthetic reaction centre domain and a core antenna system. Most constituent elements of the electron transfer system have been located and their relative centre-to-centre distances determined at an accuracy of approximately 1 A. These include three pseudosymmetric pairs of Chla and three iron-sulphur centres, FX, FA and FB. The first pair, a Chla dimer, has been assigned to the primary electron donor P700. One or both Chla of the second pair, eC2 and eC'2, presumably functionally link P700 to the corresponding Chla of the third pair, eC3 and eC'3, which is assumed to constitute the spectroscopically-identified primary electron acceptor(s), A0, of PSI. A likely location of the subsequent phylloquinone electron acceptor, QK, in relation to the properties of the spectroscopically identified electron acceptor A1 is discussed. The positions of a total of 89 Chla, 83 of which constitute the core antenna system, are presented. The maximal centre-to-centre distance between antenna Chla is < or = 16 A; 81 Chla are grouped into four clusters comprising 21, 23, 17 and 20 Chla, respectively. Two "connecting" Chla are positioned to structurally (and possibly functionally) link the Chla of the core antenna to those of the electron transfer system. Thus the second and third Chla pairs of the electron transfer system may have a dual function both in energy transfer and electron transport. A total of 34 transmembrane and nine surface alpha-helices have been identified and assigned to the 11 subunits of the PSI complex. The connectivity of the nine C-terminal (seven transmembrane, two "surface") alpha-helices of each of the large core subunits PsaA and PsaB is described. The assignment of the amino acid sequence to the transmembrane alpha-helices is proposed and likely residues involved in co-ordinating the Chla of the electron transfer system discussed.
    Journal of Molecular Biology 10/1997; 272(5):741-69. DOI:10.1006/jmbi.1997.1269 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Life on Earth depends on photosynthesis, the conversion of light energy from the Sun to chemical energy. In plants, green algae and cyanobacteria, this process is driven by the cooperation of two large protein-cofactor complexes, photosystems I and II, which are located in the thylakoid photosynthetic membranes. The crystal structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus described here provides a picture at atomic detail of 12 protein subunits and 127 cofactors comprising 96 chlorophylls, 2 phylloquinones, 3 Fe4S4 clusters, 22 carotenoids, 4 lipids, a putative Ca2+ ion and 201 water molecules. The structural information on the proteins and cofactors and their interactions provides a basis for understanding how the high efficiency of photosystem I in light capturing and electron transfer is achieved.
    Nature 07/2001; 411(6840):909-17. DOI:10.1038/35082000 · 42.35 Impact Factor
  • Source
    Angewandte Chemie International Edition 01/2003; 42(7):768-72. DOI:10.1002/anie.200390203 · 11.34 Impact Factor