Article

A melanocyte lineage program confers resistance to MAP kinase pathway inhibition

1] The Broad Institute of Harvard University and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA [3] Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA.
Nature (Impact Factor: 42.35). 11/2013; 504(7478). DOI: 10.1038/nature12688
Source: PubMed

ABSTRACT Malignant melanomas harbouring point mutations (Val600Glu) in the serine/threonine-protein kinase BRAF (BRAF(V600E)) depend on RAF-MEK-ERK signalling for tumour cell growth. RAF and MEK inhibitors show remarkable clinical efficacy in BRAF(V600E) melanoma; however, resistance to these agents remains a formidable challenge. Global characterization of resistance mechanisms may inform the development of more effective therapeutic combinations. Here we carried out systematic gain-of-function resistance studies by expressing more than 15,500 genes individually in a BRAF(V600E) melanoma cell line treated with RAF, MEK, ERK or combined RAF-MEK inhibitors. These studies revealed a cyclic-AMP-dependent melanocytic signalling network not previously associated with drug resistance, including G-protein-coupled receptors, adenyl cyclase, protein kinase A and cAMP response element binding protein (CREB). Preliminary analysis of biopsies from BRAF(V600E) melanoma patients revealed that phosphorylated (active) CREB was suppressed by RAF-MEK inhibition but restored in relapsing tumours. Expression of transcription factors activated downstream of MAP kinase and cAMP pathways also conferred resistance, including c-FOS, NR4A1, NR4A2 and MITF. Combined treatment with MAPK-pathway and histone-deacetylase inhibitors suppressed MITF expression and cAMP-mediated resistance. Collectively, these data suggest that oncogenic dysregulation of a melanocyte lineage dependency can cause resistance to RAF-MEK-ERK inhibition, which may be overcome by combining signalling- and chromatin-directed therapeutics.

0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recurrent BRAF driver mutation V600E (BRAF (V600E)) is currently one of the most clinically relevant mutations in melanoma. However, the genome-wide transcriptional and epigenetic dysregulations induced by BRAF (V600E) are still unclear. The investigation of this driver mutation's functional consequences is critical to the understanding of tumorigenesis and the development of therapeutic strategies. We performed an integrative analysis of transcriptomic and epigenomic changes disturbed by BRAF (V600E) by comparing the gene expression and methylation profiles of 34 primary cutaneous melanoma tumors harboring BRAF (V600E) with those of 27 BRAF (WT) samples available from The Cancer Genome Atlas (TCGA). A total of 711 significantly differentially expressed genes were identified as putative BRAF (V600E) target genes. Functional enrichment analyses revealed the transcription factor MITF (p < 3.6 × 10(-16)) and growth factor TGFB1 (p < 3.1 × 10(-9)) were the most significantly enriched up-regulators, with MITF being significantly up-regulated, whereas TGFB1 was significantly down-regulated in BRAF (V600E), suggesting that they may mediate tumorigenesis driven by BRAF (V600E). Further investigation using the MITF ChIP-Seq data confirmed that BRAF (V600E) led to an overall increased level of gene expression for the MITF targets. Furthermore, DNA methylation analysis revealed a global DNA methylation loss in BRAF (V600E) relative to BRAF (WT). This might be due to BRAF dysregulation of DNMT3A, which was identified as a potential target with significant down-regulation in BRAF (V600E). Finally, we demonstrated that BRAF (V600E) targets may play essential functional roles in cell growth and proliferation, measured by their effects on melanoma tumor growth using a short hairpin RNA silencing experimental dataset. Our integrative analysis identified a set of BRAF (V600E) target genes. Further analyses suggested a complex mechanism driven by mutation BRAF (V600E) on melanoma tumorigenesis that disturbs specific cancer-related genes, pathways, and methylation modifications.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors elicit a transient anti-tumor response in ∼80% of BRAF V600-mutant melanoma patients that almost uniformly precedes the emergence of resistance. Here we used a mouse model of melanoma in which melanocyte-specific expression of Braf V618E (analogous to the human BRAF V600E mutation) led to the development of skin hyper-pigmentation and nevi, as well as melanoma formation with incomplete penetrance. Sleeping Beauty insertional mutagenesis in this model led to accelerated and fully penetrant melanomagenesis and synchronous tumor formation. Treatment of Braf V618E trans-poson mice with the BRAF inhibitor PLX4720 resulted in tumor regression followed by relapse. Analysis of transposon insertions identified eight genes including Braf, Mitf, and ERas (ES-cell expressed Ras) as candidate resistance genes. Expression of ERAS in human melanoma cell lines conferred resistance to PLX4720 and induced hyperphosphorylation of AKT (v-akt murine thy-moma viral oncogene homolog 1), a phenotype reverted by com-binatorial treatment with PLX4720 and the AKT inhibitor MK2206. We show that ERAS expression elicits a prosurvival signal associated with phosphorylation/inactivation of BAD, and that the resistance of hepatocyte growth factor-treated human melanoma cells to PLX4720 can be reverted by treatment with the BAD-like BH3 mimetic ABT-737. Thus, we define a role for the AKT/BAD pathway in resistance to BRAF inhibition and illustrate an in vivo approach for finding drug resistance genes. melanoma | drug resistance | BRAF inhibitors | mouse models
    Proceedings of the National Academy of Sciences 01/2015; DOI:10.1073/pnas.1418163112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Graphical Abstract Highlights d Most targets of MAPK pathway are regulated by it only in a subset of cell lines d Cell lines with high activity of IFN pathway are resistant to MEK inhibition d IFNa/b treatment enhances the cytotoxic response of MEK inhibition In Brief Litvin et al. developed a computational method to identify targets of MAPK in melanoma and found that most genes are targets only in a subset of cell lines. They showed that interferon plays an important role in response to MAPK inhibition, and that IFNa/b enhances the effect of MEK inhibition.
    Molecular Cell 04/2015; 57:784-796. DOI:10.1016/j.molcel.2014.12.030 · 14.46 Impact Factor

Preview (3 Sources)

Download
0 Downloads
Available from