Insulin receptor substrate signaling suppresses neonatal autophagy in the heart.

The Journal of clinical investigation (Impact Factor: 15.39). 11/2013; DOI: 10.1172/JCI71171
Source: PubMed

ABSTRACT The induction of autophagy in the mammalian heart during the perinatal period is an essential adaptation required to survive early neonatal starvation; however, the mechanisms that mediate autophagy suppression once feeding is established are not known. Insulin signaling in the heart is transduced via insulin and IGF-1 receptors (IGF-1Rs). We disrupted insulin and IGF-1R signaling by generating mice with combined cardiomyocyte-specific deletion of Irs1 and Irs2. Here we show that loss of IRS signaling prevented the physiological suppression of autophagy that normally parallels the postnatal increase in circulating insulin. This resulted in unrestrained autophagy in cardiomyocytes, which contributed to myocyte loss, heart failure, and premature death. This process was ameliorated either by activation of mTOR with aa supplementation or by genetic suppression of autophagic activation. Loss of IRS1 and IRS2 signaling also increased apoptosis and precipitated mitochondrial dysfunction, which were not reduced when autophagic flux was normalized. Together, these data indicate that in addition to prosurvival signaling, insulin action in early life mediates the physiological postnatal suppression of autophagy, thereby linking nutrient sensing to postnatal cardiac development.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: -Heart failure is a leading cause of morbidity and mortality in the USA and is closely associated with diabetes mellitus. The molecular link between diabetes and heart failure is incompletely understood. We recently demonstrated that insulin receptor substrate 1, 2 (IRS1, 2) are key components of insulin signaling and loss of IRS1 and IRS2 mediates insulin resistance, resulting in metabolic dysregulation and heart failure, which is associated with downstream Akt inactivation and in turn activation of the forkhead transcription factor Foxo1. -To determine the role of Foxo1 in control of heart failure in insulin resistance and diabetes, we generated mice lacking Foxo1 gene specifically in the heart. Mice lacking both IRS1 and IRS2 in adult hearts exhibited severe heart failure and a remarkable increase in the β-isoform of myosin heavy chain (β-MHC) gene expression, while deletion of cardiac Foxo1 gene largely prevented the heart failure and resulted in a decrease in β-MHC expression. The effect of Foxo1 deficiency on rescuing cardiac dysfunction was also observed in db/db mice and high-fat diet mice. Using cultures of primary ventricular cardiomyocytes, we found that Foxo1 interacts with the promoter region of β-MHC and stimulates gene expression, mediating an effect of insulin that suppresses β-MHC expression. -Our study suggests that Foxo1 has important roles in promoting diabetic cardiomyopathy and controls β-MHC expression in development of cardiac dysfunction. Targeting Foxo1 and its regulation will provide novel strategies in preventing metabolic and myocardial dysfunction and influencing MHC plasticity in diabetes mellitus.
    Circulation Heart Failure 12/2014; DOI:10.1161/CIRCHEARTFAILURE.114.001457 · 5.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macroautophagy (herein referred to as autophagy) is an evolutionarily conserved mechanism of adaptation to adverse microenvironmental conditions, including limited nutrient supplies. Several sensors interacting with the autophagic machinery have evolved to detect fluctuations in key metabolic parameters. The signal transduction cascades operating downstream of these sensors are highly interconnected to control a spatially and chronologically coordinated autophagic response that maintains the health and function of individual cells while preserving organismal homeostasis. Here, we discuss the physiological regulation of autophagy by metabolic circuitries, as well as alterations of such control in disease. Copyright © 2014 Elsevier Inc. All rights reserved.
    Cell 12/2014; 159(6):1263-1276. DOI:10.1016/j.cell.2014.11.006 · 33.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of heart disease, especially heart failure, continues to increase, and cardiovascular disease remains the leading cause of death worldwide. As cardiomyocytes are essentially irreplaceable, protein quality control is pivotal to cellular homeostasis and, ultimately, cardiac performance. Three evolutionarily conserved mechanisms-autophagy, the unfolded protein response, and the ubiquitin-proteasome system-act in concert to degrade misfolded proteins and eliminate defective organelles. Recent advances have revealed that these mechanisms are intimately associated with cellular metabolism. Going forward, comprehensive understanding of the role of protein quality control mechanisms in cardiac pathology will require integration of metabolic pathways and metabolic control. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Metabolism 02/2015; 21(2):215-226. DOI:10.1016/j.cmet.2015.01.016 · 16.75 Impact Factor