Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling.

Department of Biochemistry , Stanford University School of Medicine , Stanford , United States.
eLife Sciences (Impact Factor: 8.52). 10/2013; 2:e01340. DOI: 10.7554/eLife.01340
Source: PubMed

ABSTRACT The Hedgehog (Hh) signal is transduced across the membrane by the heptahelical protein Smoothened (Smo), a developmental regulator, oncoprotein and drug target in oncology. We present the 2.3 Å crystal structure of the extracellular cysteine rich domain (CRD) of vertebrate Smo and show that it binds to oxysterols, endogenous lipids that activate Hh signaling. The oxysterol-binding groove in the Smo CRD is analogous to that used by Frizzled 8 to bind to the palmitoleyl group of Wnt ligands and to similar pockets used by other Frizzled-like CRDs to bind hydrophobic ligands. The CRD is required for signaling in response to native Hh ligands, showing that it is an important regulatory module for Smo activation. Indeed, targeting of the Smo CRD by oxysterol-inspired small molecules can block signaling by all known classes of Hh activators and by clinically relevant Smo mutants. DOI:

  • [Show abstract] [Hide abstract]
    ABSTRACT: Patched (Ptc) is a twelve-pass transmembrane protein that functions as a receptor for the Hedgehog (Hh) family of morphogens. In addition to Ptc, several accessory proteins including the CDO/Ihog family of co-receptors are necessary for proper Hh signaling. Structures of Hh proteins bound to members of the CDO/Ihog family are known, but the nature of the full Hh receptor complex is not well understood. We have expressed the Drosophila Patched and Mouse Patched-1 proteins in Sf9 cells and find that Sonic Hedgehog will bind to Mouse Patched-1 in isolated Sf9 cell membranes but that purified, detergent-solubilized Ptc proteins do not interact strongly with cognate Hh and CDO/Ihog homologs. These results may reflect a nonnative conformation of detergent-solubilized Ptc or that an additional factor or factors lost during purification are required for high-affinity Ptc binding to Hh.
    Protein Expression and Purification 09/2014; DOI:10.1016/j.pep.2014.09.012 · 1.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth of some tumours; however, mutations at SMO have been found to abolish their antitumour effects, a phenomenon known as chemoresistance. Here we report three crystal structures of human SMO bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6-2.8 Å resolution. The long and narrow cavity in the transmembrane domain of SMO harbours multiple ligand binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct interactions at D473(6.54f) elucidated the structural basis for the differential effects of chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational rearrangement of the binding pocket residues, which could contribute to SMO activation. Collectively, these studies reveal the structural basis for the modulation of SMO by small molecules.
    Nature Communications 07/2014; 5:4355. DOI:10.1038/ncomms5355 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Misactivation of the seven-transmembrane protein Smoothened (Smo) is frequently associated with basal cell carcinoma and medulloblastoma. Cellular exposure to secreted Hedgehog (Hh) protein or oncogenic mutations in Hh pathway components induces Smo accumulation in the primary cilium, an antenna-like organelle with mostly unknown cellular functions. Despite the data supporting an indispensable role of the primary cilium in Smo activation, the mechanistic underpinnings of this dependency remain unclear. Using a cell-membrane-impermeable Smo antagonist (IHR-1), we demonstrate that Smo supplied with a synthetic agonist or activated with oncogenic mutations can signal without ciliary accumulation. Similarly, cells with compromised ciliary Smo trafficking due to loss of the phosphatidylinositol-4-phosphate 3-kinase (PI3K)-C2α retain transcriptional response to an exogenously supplied Smo agonist. These observations suggest that assembly of a Smo-signaling complex in the primary cilium is not a prerequisite for Hh pathway activation driven by Smo agonists or oncogenic Smo molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Chemistry & Biology 12/2014; 21(12). DOI:10.1016/j.chembiol.2014.10.013 · 6.59 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014