A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells

Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
Blood (Impact Factor: 9.78). 10/2013; 122(25). DOI: 10.1182/blood-2013-02-483487
Source: PubMed

ABSTRACT Somatic heterozygous mutations of the DNA methyltransferase gene DNMT3A occur frequently in acute myeloid leukemia and other hematological malignancies, with the majority (~60%) of mutations affecting a single amino acid, Arg882 (R882), in the catalytic domain. While the mutations impair DNMT3A catalytic activity in vitro, their effects on DNA methylation in cells have not been explored. Here, we show that exogenously expressed mouse Dnmt3a proteins harboring the corresponding R878 mutations largely fail to mediate DNA methylation in murine embryonic stem (ES) cells, but are capable of interacting with wild-type Dnmt3a and Dnmt3b. Co-expression of the Dnmt3a R878H (histidine) mutant protein results in inhibition of the ability of wild-type Dnmt3a and Dnmt3b to methylate DNA in murine ES cells. Furthermore, expression of Dnmt3a R878H in ES cells containing endogenous Dnmt3a or Dnmt3b induces hypomethylation. These results suggest that the DNMT3A R882 mutations, in addition to being hypomorphic, have dominant-negative effects.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute myeloid leukemia (AML) is a clonal disorder of the blood forming cells characterized by accumulation of immature blast cells in the bone marrow and peripheral blood. Being a heterogeneous disease, AML has been the subject of numerous studies that focus on unraveling the clinical, cellular and molecular variations with the aim to better understand and treat the disease. Cytogenetic-risk stratification of AML is well established and commonly used by clinicians in therapeutic management of cases with chromosomal abnormalities. Successive inclusion of novel molecular abnormalities has substantially modified the classification and understanding of AML in the past decade. With the advent of next generation sequencing (NGS) technologies the discovery of novel molecular abnormalities has accelerated. NGS has been successfully used in several studies and has provided an unprecedented overview of molecular aberrations as well as the underlying clonal evolution in AML. The extended spectrum of abnormalities discovered by NGS is currently under extensive validation for their prognostic and therapeutic values. In this review we highlight the recent advances in the understanding of AML in the NGS era.
    BMC Genomics 01/2015; 16(1). DOI:10.1186/1471-2164-16-S1-S5 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past decade, genomic studies have identified a number of novel and recurrent somatic mutations that affect epigenetic patterning in patients with myeloid malignancies, including myeloproliferative neoplasms, myelodysplastic syndrome, and acute myeloid leukemia. Many of these mutations occur in genes with established roles in the regulation and maintenance of DNA methylation and/or chromatin modifications in hematopoietic stem/progenitor cells. Subsequent genetic and functional studies have revealed that these mutations affect epigenetic patterning in myeloid diseases. In this review, we discuss historical and recent studies implicating epigenetic modifiers in the development and evolution of the various myeloid malignancies and discuss how this knowledge has and will lead to future clinical and biologic insights.
    Immunological Reviews 01/2015; 263(1). DOI:10.1111/imr.12246 · 12.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid malignancies consist of acute myeloid leukemia (AML), myelodysplastic syndromes (MDS) and myeloproliferative neoplasm (MPN). The latter two diseases have preleukemic features and frequently evolve to AML. As with solid tumors, multiple mutations are required for leukemogenesis. A decade ago, these gene alterations were subdivided into two categories: class I mutations stimulating cell growth or inhibiting apoptosis; and class II mutations that hamper differentiation of hematopoietic cells. In mouse models, class I mutations such as the Bcr-Abl fusion kinase induce MPN by themselves and some class II mutations such as Runx1 mutations induce MDS. Combinations of class I and class II mutations induce AML in a variety of mouse models. Thus, it was postulated that hematopoietic cells whose differentiation is blocked by class II mutations would autonomously proliferate with class I mutations leading to the development of leukemia. Recent progress in high-speed sequencing has enabled efficient identification of novel mutations in a variety of molecules including epigenetic factors, splicing factors, signaling molecules and proteins in the cohesin complex; most of these are not categorized as either class I or class II mutations. The functional consequences of these mutations are now being extensively investigated. In this article, we will review the molecular basis of hematological malignancies, focusing on mouse models and the interfaces between these models and clinical findings, and revisit the classical class I/II hypothesis.
    Proceedings of the Japan Academy Ser B Physical and Biological Sciences 01/2014; 90(10):389-404. DOI:10.2183/pjab.90.389 · 2.56 Impact Factor