Article

Activity-dependent regulation of dendritic growth and maintenance by glycogen synthase kinase 3β.

1] Department of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA [2] Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
Nature Communications (Impact Factor: 10.74). 10/2013; 4:2628. DOI: 10.1038/ncomms3628
Source: PubMed

ABSTRACT Activity-dependent dendritic development represents a crucial step in brain development, but its underlying mechanisms remain to be fully elucidated. Here we report that glycogen synthase kinase 3β (GSK3β) regulates dendritic development in an activity-dependent manner. We find that GSK3β in somatodendritic compartments of hippocampal neurons becomes highly phosphorylated at serine-9 upon synaptogenesis. This phosphorylation-dependent GSK3β inhibition is mediated by neurotrophin signalling and is required for dendritic growth and arbourization. Elevation of GSK3β activity leads to marked shrinkage of dendrites, whereas its inhibition enhances dendritic growth. We further show that these effects are mediated by GSK3β regulation of surface GABAA receptor levels via the scaffold protein gephyrin. GSK3β activation leads to gephyrin phosphorylation to reduce surface GABAA receptor clusters, resulting in neuronal hyperexcitability that causes dendrite shrinkage. These findings thus identify GSK3β as a key player in activity-dependent regulation of dendritic development by targeting the excitatory-inhibitory balance of the neuron.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal alcohol spectrum disorders (FASDs) are the number one cause of preventable mental retardation. An estimated 2-5% of children are diagnosed as having a FASD. While it is known that children prenatally exposed to alcohol experience cognitive deficits and a higher incidence of psychiatric illness later in life, the pathways underlying these abnormalities remain uncertain. GSK3β and CDK5 are protein kinases that are converging points for a vast number of signaling cascades, including those controlling cellular processes critical to learning and memory. We investigated whether levels of GSK3β and CDK5 are affected by moderate prenatal alcohol exposure (PAE), specifically in the hippocampus and medial frontal cortex of the adolescent mouse. In the present work we utilized immunoblotting techniques to demonstrate that moderate PAE increased hippocampal p35 and β-catenin, and decreased total levels of GSK3β, while increasing GSK3β Ser9 and Tyr216 phosphorylation. Interestingly, different alterations were seen in the medial frontal cortex where p35 and CDK5 were decreased and increased total GSK3β was accompanied by reduced Tyr216 of the enzyme. These results suggest that kinase dysregulation during adolescence might be an important contributing factor to the effects of PAE on hippocampal and medial frontal cortical functioning; and by extension, that global modulation of these kinases may produce differing effects depending on brain region.
    Toxicology Reports 01/2014; DOI:10.1016/j.toxrep.2014.08.005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels - namely, type A GABA (GABAA) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
    Nature Reviews Neuroscience 02/2014; 15(3):141-156. DOI:10.1038/nrn3670 · 31.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GABAA receptors (GABAARs) are ligand-gated Cl− channels that mediate most of the fast inhibitory neurotransmission in the central nervous system (CNS). Multiple GABAAR subtypes are assembled from a family of 19 subunit genes, raising the question of the significance of this heterogeneity. In this review, we discuss the evidence that GABAAR subtypes represent distinct receptor populations with a specific spatio-temporal expression pattern in the developing and adult CNS, being endowed with unique functional and pharmacological properties, as well as being differentially regulated at the transcriptional, post-transcriptional and translational levels. GABAAR subtypes are targeted to specific subcellular domains to mediate either synaptic or extrasynaptic transmission, and their action is dynamically regulated by a vast array of molecular mechanisms to adjust the strength of inhibition to the changing needs of neuronal networks. These adaptations involve not only changing the gating or kinetic properties of GABAARs, but also modifying the postsynaptic scaffold organised by gephyrin to anchor specific receptor subtypes at postsynaptic sites. The significance of GABAAR heterogeneity is particularly evident during CNS development and adult neurogenesis, with different receptor subtypes fulfilling distinct steps of neuronal differentiation and maturation. Finally, analysis of the specific roles of GABAAR subtypes reveals their involvement in the pathophysiology of major CNS disorders, and opens novel perspectives for therapeutic intervention. In conclusion, GABAAR subtypes represent the substrate of a multifaceted inhibitory neurotransmission system that is dynamically regulated and performs multiple operations, contributing globally to the proper development, function and plasticity of the CNS.
    European Journal of Neuroscience 03/2014; 39(11). DOI:10.1111/ejn.12534 · 3.67 Impact Factor

Preview

Download
3 Downloads
Available from