F11R Is a Novel Monocyte Prognostic Biomarker for Malignant Glioma

University Hospital of Heidelberg, Germany
PLoS ONE (Impact Factor: 3.23). 10/2013; 8(10):e77571. DOI: 10.1371/journal.pone.0077571
Source: PubMed

ABSTRACT Brain tumors (gliomas) contain large populations of infiltrating macrophages and recruited microglia, which in experimental murine glioma models promote tumor formation and progression. Among the barriers to understanding the contributions of these stromal elements to high-grade glioma (glioblastoma; GBM) biology is the relative paucity of tools to characterize infiltrating macrophages and resident microglia. In this study, we leveraged multiple RNA analysis platforms to identify new monocyte markers relevant to GBM patient outcome.
High-confidence lists of mouse resident microglia- and bone marrow-derived macrophage-specific transcripts were generated using converging RNA-seq and microarray technologies and validated using qRT-PCR and flow cytometry. Expression of select cell surface markers was analyzed in brain-infiltrating macrophages and resident microglia in an induced GBM mouse model, while allogeneic bone marrow transplantation was performed to trace the origins of infiltrating and resident macrophages. Glioma tissue microarrays were examined by immunohistochemistry, and the Gene Expression Omnibus (GEO) database was queried to determine the prognostic value of identified microglia biomarkers in human GBM.
We generated a unique catalog of differentially-expressed bone marrow-derived monocyte and resident microglia transcripts, and demonstrated that brain-infiltrating macrophages acquire F11R expression in GBM and following bone-marrow transplantation. Moreover, mononuclear cell F11R expression positively correlates with human high-grade glioma and additionally serves as a biomarker for GBM patient survival, regardless of GBM molecular subtype.
These studies establish F11R as a novel monocyte prognostic marker for GBM critical for defining a subpopulation of stromal cells for future potential therapeutic intervention.

Download full-text


Available from: Jason R Walker, Apr 21, 2014
33 Reads
  • Source
    • "Several methods are now typically employed for these studies, including microglia culture in vitro (Hassan et al., 1991; Ohtaki et al., 2013; Szabo and Gulya, 2013), fluorescence-activated cell sorting (FACS; Hassan et al., 1991), laser capture microdissection (LCM; Waller et al., 2012), and ribosome messenger RNA (mRNA)-trap (BacTRAP and Ribo-Tag) technologies (Heiman et al., 2008; Sanz et al., 2009). While each of these approaches has its strengths and limitations, there are two major barriers to these discovery efforts: First, the RNA routinely isolated from microglia is in low abundance and frequently of low quality, necessitating new methods for RNA isolation and analysis (Pong et al., 2013b; Tariq et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression profiling of distinct central nervous system (CNS) cell populations has been employed to facilitate disease classification and to provide insights into the molecular basis of brain pathology. One important cell type implicated in a wide variety of CNS disease states is the resident brain macrophage (microglia). In these studies, microglia are often isolated from dissociated brain tissue by flow sorting procedures [fluorescence-activated cell sorting (FACS)] or from postnatal glial cultures by mechanic isolation. Given the highly dynamic and state-dependent functions of these cells, the use of FACS or short-term culture methods may not accurately capture the biology of brain microglia. In the current study, we performed RNA-sequencing using Cx3cr1+/GFP labeled microglia isolated from the brainstem of 6-week-old mice to compare the transcriptomes of FACS-sorted versus laser capture microdissection (LCM). While both isolation techniques resulted in a large number of shared (common) transcripts, we identified transcripts unique to FACS-isolated and LCM-captured microglia. In particular, ∼50% of these LCM-isolated microglial transcripts represented genes typically associated with neurons and glia. While these transcripts clearly localized to microglia using complementary methods, they were not translated into protein. Following the induction of murine experimental autoimmune encephalomyelitis, increased oligodendrocyte and neuronal transcripts were detected in microglia, while only the myelin basic protein oligodendrocyte transcript was increased in microglia after traumatic brain injury. Collectively, these findings have implications for the design and interpretation of microglia transcriptome-based investigations. GLIA 2014
    Glia 09/2014; 63(4). DOI:10.1002/glia.22754 · 6.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages are extremely versatile cells that adopt a distinct phenotype in response to a changing microenvironment. Consequently, macrophages are involved in diverse functions, ranging from organogenesis and tissue homeostasis to recognition and destruction of invading pathogens. In cancer, tumor-associated macrophages (TAM) often contribute to tumor progression by increasing cancer cell migration and invasiveness, stimulating angiogenesis, and suppressing anti-tumor immunity. Accumulating evidence suggests that these different functions could be exerted by specialized TAM subpopulations. Here, we discuss the potential underlying mechanisms regulating TAM specialization and elaborate on TAM heterogeneity in terms of their ontogeny, activation state, and intra-tumoral localization. In addition, parallels are drawn between TAM and macrophages in other tissues. Together, a better understanding of TAM diversity could provide a rationale for novel strategies aimed at targeting the most potent tumor-supporting macrophages.
    Frontiers in Immunology 03/2014; 5:127. DOI:10.3389/fimmu.2014.00127
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several studies have substantiated the hypothesis that tumor progression is not only driven by the tumor cells themselves but also by their interaction with intrinsic and surrounding stromal cells. Tumor-associated macrophages and microglial cells (TAMs) represent one major stromal cell component of glioblastomas. Additionally, in many gliomas, chemokines are highly expressed and some chemokines were already linked to settlement of TAMs in tumors. However, although chemoattraction mechanisms mediated by chemokines and their receptors are well documented, information on their expression and role in TAMs, particularly in patients, is limited. Therefore, we investigated the transcription of the chemokine-receptor combinations CXCL12-CXCR4-CXCR7, CXCL16-CXCR6 and CX3CL1-CX3CR1 in freshly isolated TAMs from 20 human glioblastomas in relation to in vitro polarized M1- and M2-macrophages. We demonstrated that TAMs express both M1- and M2-markers. Compared to in vitro polarized macrophages, the M1-marker interleukin (IL)-6 was similarly expressed, whereas IL-1β and tumor necrosis factor (TNF)-α were found at lower levels. The M2-marker IL-10 was comparably expressed, while CD163 and transforming growth factor (TGF)-β were detected with one tenth lower intensities in TAMs. All investigated chemokines/receptors were transcribed at moderate to high levels in TAMs as well as in vitro polarized macrophages. However, CX3CR1 was markedly higher and CXCR7 was somewhat higher expressed in TAMs, whereas M2-macrophages were characterized by the highest CXCL12 and a moderate CX3CL1 expression. Collectively, TAMs share properties of M1- and M2-macrophages and show a considerably higher expression of the chemokine receptors CXCR7 and CX3CR1.
    Oncology Reports 05/2014; 32(1). DOI:10.3892/or.2014.3214 · 2.30 Impact Factor
Show more