Article

5α-reductase type 3 enzyme in benign and malignant prostate

Department of Urology, Roswell Park Cancer Institute, Buffalo, New York.
The Prostate (Impact Factor: 3.57). 02/2014; 74(3). DOI: 10.1002/pros.22745
Source: PubMed

ABSTRACT Currently available 5α-reductase inhibitors are not completely effective for treatment of benign prostate enlargement, prevention of prostate cancer (CaP), or treatment of advanced castration-recurrent (CR) CaP. We tested the hypothesis that a novel 5α-reductase, 5α-reductase-3, contributes to residual androgen metabolism, especially in CR-CaP.
A new protein with potential 5α-reducing activity was expressed in CHO-K1 cellsandTOP10 E. coli for characterization. Protein lysates and total mRNA were isolated from preclinical and clinical tissues. Androgen metabolism was assessed using androgen precursors and thin layer chromatography or liquid chromatography tandem mass spectrometry.
The relative mRNA expression for the three 5α-reductase enzymes in clinical samples of CR-CaP was 5α-reductase-3 ≫ 5α-reductase-1 > 5α-reductase-2. Recombinant 5α-reductase-3 protein incubations converted testosterone, 4-androstene-3,17-dione (androstenedione) and 4-pregnene-3,20-dione (progesterone) to dihydrotestosterone, 5α-androstan-3,17-dione, and 5α-pregnan-3,20-dione, respectively. 5α-Reduced androgen metabolites were measurable in lysates from androgen-stimulated (AS) CWR22 and CR-CWR22 tumors and clinical specimens of AS-CaP and CR-CaP pre-incubated with dutasteride (a bi-specific inhibitor of 5α-reductase-1 and 2).
Human prostate tissues contain a third 5α-reductase that was inhibited poorly by dutasteride at high androgen substrate concentration in vitro, and it may promote DHT formation in vivo, through alternative androgen metabolism pathways when testosterone levels are low. Prostate © 2013 Wiley Periodicals, Inc.

0 Bookmarks
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Benign prostatic hyperplasia (BPH) is the most common prostate problem in older men. The present study aimed to investigate the inhibitory effect of Panax ginseng C.A. Meyer (P. ginseng) on a rat model of testosterone-induced BPH. The rats were divided into 3 groups (each group, n=10): control, testosterone-induced BPH (20 mg/kg, subcutaneous injection), and P. ginseng (200 mg/kg, orally) groups. After 4 weeks, all animals were sacrificed to examine the blood biochemical profiles, prostate volume, weight, histopathological changes, alpha-1D adrenergic receptor (Adra1d) mRNA expression, and epidermal growth factor receptor (EGFR) and B-cell CLL/lymphoma 2 (BCL2) protein expression. The group treated with P. ginseng showed significantly lesser prostate size and weight than the testosterone-induced BPH group. In addition, P. ginseng decreased the mRNA expression of Adra1d as well as the expression of EGFR and BCL2 in prostate tissue. These results suggest that P. ginseng may inhibit the alpha-1-adrenergic receptor to suppress the development of BPH.
    International neurourology journal 12/2014; 18(4):179-86. DOI:10.5213/inj.2014.18.4.179
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of castration-resistant prostate cancer (CRPC) in a low androgen environment, arising from androgen deprivation therapy (ADT), is a major problem in patients with advanced prostate cancer (PCa). Several mechanisms have been hypothesized to explain the progression of PCa to CRPC during ADT, one of them is so called persistent intratumoral steroidogenesis. The existence of intratumoral steroidogenesis was hinted based on the residual levels of intraprostatic testosterone (T) and dihydrotestosterone (DHT) after ADT. Accumulating evidence has shown that the intraprostatic androgen levels after ADT are sufficient to induce cancer progression. Several studies now have demonstrated that PCa cells are able to produce T and DHT from different androgen precursors, such as cholesterol and the adrenal androgen, dehydroepiandrosterone (DHEA). Furthermore, up-regulation of genes encoding key steroidogenic enzymes in PCa cells seems to be an indicator for active intratumoral steroidogenesis in CRPC cells. Currently, several drugs are being developed targeting those steroidogenic enzymes, some of which are now in clinical trials or are being used as standard care for CRPC patients. In the future, novel agents that target steroidogenesis may add to the arsenal of drugs for CRPC therapy.
    09/2014; 2(3):105-13. DOI:10.12954/PI.14063
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital disorders of glycosylation (CDG) comprise a group of inborn errors of metabolism with abnormal glycosylation of proteins and lipids. Patients with defective protein N-glycosylation are identified in routine metabolic screening via analysis of serum transferrin glycosylation. Defects in the assembly of the dolichol linked Glc3Man9GlcNAc2 glycan and its transfer to proteins lead to the (partial) absence of complete glycans on proteins. These defects are called CDG-I and are located in the endoplasmic reticulum (ER) or cytoplasm. Defects in the subsequent processing of protein bound glycans result in the presence of truncated glycans on proteins. These defects are called CDG-II and the enzymes involved are located mainly in the Golgi apparatus. In recent years, human defects have been identified in dolichol biosynthesis genes within the group of CDG-I patients. This has increased interest in dolichol metabolism, has resulted in specific recognizable clinical symptoms in CDG-I and has offered new mechanistic insights in dolichol biosynthesis. We here review its biosynthetic pathways, the clinical and biochemical phenotypes in dolichol-related CDG defects, up to the formation of dolichyl-P-mannose (Dol-P-Man), and discuss existing evidence of regulatory networks in dolichol metabolism to provide an outlook on therapeutic strategies.
    Journal of Inherited Metabolic Disease 10/2014; DOI:10.1007/s10545-014-9760-1 · 4.14 Impact Factor