Article

Sol-gel thin-film based mesoporous silica and carbon nanotubes for the determination of dopamine, uric acid and paracetamol in urine.

Institute of Chemistry, State University of São Paulo, PO Box 780, 13560-970 São Carlos, SP, Brazil. Electronic address: .
Talanta (Impact Factor: 3.5). 11/2013; 116:726-35. DOI: 10.1016/j.talanta.2013.07.044
Source: PubMed

ABSTRACT This work describes the preparation, characterization and application of a hybrid material composed of disordered mesoporous silica (SiO2) modified with multiwalled carbon nanotubes (MWCNTs), obtained by the sol-gel process using HF as the catalyst. This hybrid material was characterized by N2 adsorption-desorption isotherms, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission microscopy (HR-TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). This new hybrid material was used for the construction of a thin film on a glassy carbon electrode. The modified electrode using this material was designated SiO2/MWCNT/GCE. The electrocatalytic properties of the electrode toward dopamine, uric acid and paracetamol oxidation were studied by differential pulse voltammetry. Well-defined and separated oxidation peaks were observed in phosphate buffer solution at pH 7.0, in contrast with the ill-defined peaks observed with unmodified glassy carbon electrodes. The electrode had high sensitivity for the determination of dopamine, uric acid and paracetamol, with the limits of detection obtained using statistical methods, at 0.014, 0.068 and 0.098µmolL(-1), respectively. The electrode presented some important advantages, including enhanced physical rigidity, surface renewability by polishing and high sensitivity, allowing the simultaneous determination of these three analytes in a human urine sample.

0 Bookmarks
 · 
182 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A highly dispersible and stable nanocomposite of Cu(tpa)-GO (Cu(tpa)=copper terephthalate metal-organic framework, GO=graphene oxide) was synthesized through a simple ultrasonication method. The morphologic and structure of the obtained composite were characterized via SEM, TEM, UV-vis, FT-IR, XRD and TGA. From the characterization results, the binding mechanism of the Cu(tpa) and GO was supposed to the cooperative interaction of π-π stacking, hydrogen bonding and coordination action. The electrochemical sensing property of Cu(tpa)-GO composite was investigated through casting the composite on a glassy carbon electrode (GCE), following an electro-reduction treatment to transfer the GO in the composite to the highly conductive reduced form (EGR). The results demonstrated that the electrochemical signals and peak profiles of the two drugs of acetaminophen (ACOP) and dopamine (DA) were significantly improved by the modified material, owing to the synergistic effect from high conductivity of EGR and unique electron mediating action of Cu(tpa). Under the optimum conditions, the oxidation peak currents of ACOP and DA were linearly correlated to their concentrations in the ranges of 1-100 μM and 1-50 μM, respectively. The detection limits for ACOP and DA were estimated to be as low as 0.36 μM and 0.21 μM, respectively.
    ACS Applied Materials & Interfaces 07/2014; · 5.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the synthesis, characterization and application of amorphous nickel (II) hydroxide particles, a-Ni(OH) 2 , onto a hybrid material composed of silica and graphene oxide, SiO 2 /GO. The sol-gel process using HF as the catalyst was used to obtain this organic-inorganic matrix. The Ni(OH) 2 were prepared directly on the surface of the matrix using nickel (II) acetate and N,N-dimethylformamide (DMF) as a solvent. The SiO 2 /GO/Ni(OH) 2 material was characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques. A glassy carbon electrode modified with the SiO 2 /GO/Ni(OH) 2 material was used in the development of a sensitive electrochemical sensor for the determination of vitamin D 3 by pulse differential voltammetry. A well-defined electro-oxidation peak of vitamin D 3 was observed in sodium hydroxide at pH 13. The results indicated that the resultant SiO 2 /GO/Ni(OH) 2 modified electrode is highly selective and very sensitive with a limit of detection, in pure laboratory solutions of 3.26 Â 10 À9 mol dm À3 ; therefore, it can be used to detect vitamin D 3 in real samples.
    Electrochimica Acta 10/2014; 147. · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t This paper describes the application of a glassy carbon electrode modified with a thin film of mesoporous silica/multiwalled carbon nanotubes for voltammetric determination of the fungicide carbendazim (CBZ). The hybrid material, (SiO 2 /MWCNT), was obtained by a sol–gel process using HF as the catalyst. The amperometric response to CBZ was measured at +0.73 V vs. Ag/AgCl by square wave voltammetry at pH 8.0. SiO 2 /MWCNT/GCE responded to CBZ in the linear range from 0.2 to 4.0 lmol L À1 . The calculated detection limit was 0.056 lmol L À1 , obtained using statistical methods. The SiO 2 /MWCNT/GCE sensor presented as the main characteristics high sensitivity, low detection limit and robustness, allowing CBZ determination in untreated real samples. In addition, this strategy afforded remarkable selectivity for CBZ against ascorbic and citric acid which are the main compounds of the orange juice. The excellent sensitivity and selectivity yielded feasible application for CBZ detection in orange juice sample.
    Food Chemistry 09/2014; 170:360. · 3.26 Impact Factor

Full-text

Download
111 Downloads
Available from
May 22, 2014