Article

Low-frequency response in the surface superconducting state of single-crystal ZrB12

Physical Review B (Impact Factor: 3.66). 02/2005; 71(6). DOI: 10.1103/PhysRevB.71.064506
Source: arXiv

ABSTRACT A large nonlinear response of a single crystal of ZrB12 to an ac field (frequency 40–2500 Hz) for H0>Hc2 has been observed. Direct measurements of the ac wave form and the exact numerical solution of the Ginzburg-Landau equations, as well as the phenomenological relaxation equation, permit the study of the surface superconducting state dynamics. It is shown that the low-frequency response is defined by transitions between the metastable superconducting states under the action of an ac field. The relaxation rate that determines such transition dynamics is found.

0 Bookmarks
 · 
44 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the absorption of a high-frequency electromagnetic field in the type II superconductor Pb0.8In0.2 in magnetic fields H c2 < H < H c3. The absorption component proportional to the rate of variation of the external magnetic field is detected. We assume that this absorption component is associated with the dynamic mixed state of the superconducting shell containing 2D magnetic flux vortices (Kulik vortices). The motion of these vortices under the action of the critical current ensures the required difference between the external and internal magnetic inductions of the superconducting shell upon a change in the external magnetic field. This model correctly describes the observed behavior of absorption of rf electromagnetic radiation.
    Journal of Experimental and Theoretical Physics 116(3). · 0.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the electronic structure of a complex conventional superconductor, ZrB12 employing high resolution photoemission spectroscopy and ab initio band structure calculations. The experimental valence band spectra could be described reasonably well within the local density approximation. Energy bands close to the Fermi level possess t2g symmetry and the Fermi level is found to be in the proximity of quantum fluctuation regime. The spectral lineshape in the high resolution spectra is complex exhibiting signature of a deviation from Fermi liquid behavior. A dip at the Fermi level emerges above the superconducting transition temperature that gradually grows with the decrease in temperature. The spectral simulation of the dip and spectral lineshape based on a phenomenological self energy suggests finite electron pair lifetime and a pseudogap above the superconducting transition temperature.
    Scientific Reports 01/2013; 3:3342. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the electronic structure of a complex conventional superconductor, ZrB12 employing high resolution photoemission spectroscopy and ab initio band structure calculations. The experimental valence band spectra could be described reasonably well within the local density approximation. Energy bands close to the Fermi level possess t_(2g) symmetry and the Fermi level is found to be in the proximity of quantum fluctuation regime. The spectral lineshape in the high resolution spectra is complex exhibiting signature of a deviation from Fermi liquid behavior. A dip at the Fermi level emerges above the superconducting transition temperature that gradually grows with the decrease in temperature. The spectral simulation of the dip and spectral lineshape based on a phenomenological self energy suggests a finite electron pair lifetime and a pseudogap above the superconducting transition temperature.
    11/2013;

Full-text

Download
0 Downloads
Available from