Immunohistochemical detection of Hsp90 and Ki-67 in pterygium

Diagnostic Pathology (Impact Factor: 2.41). 02/2013; 8(1). DOI: 10.1186/1746-1596-8-32
Source: PubMed

ABSTRACT Background
To examine the immunohistochemical expression of heat shock protein 90 (Hsp90) and Ki-67 protein in human pterygium.

Materials and methods
Tissues obtained during pterygium surgery of 15 patients who underwent the bare-sclera procedure and 10 normal conjunctivae were studied. All of these pterygia were primary ones. Recurrent pterygia were excluded. Normal bulbar conjunctivas (2 x 2 mm) were obtained from the nasal region close to the limbus from patients during their cataract and retina surgeries. Immunohistochemical detection of Hsp90 and Ki67 was done using the streptavidin–biotin method in paraffin embedded tissue sections.

The percentage of cells stained for Hsp90 was greater for pterygium epithelium (76 ± 10.8) than for normal conjunctiva (1.4 ± 0.8). In each pterigyum sample more than 60% of cells were positive. The differences in positive cells between normal and pterigyum epithelium were highly significant for Hsp90 (P < 0,001).
Pterygium epithelium also showed a higher percentage of cells that stained for Ki67 (10.1 ± 9.5) than for normal conjunctiva (2.1 ± 1.9). The differences in positive cells were also statistically significant for Ki67 (P < 0.01). Although there were significant differences in the majority of samples observed. It was noted that in some samples there was no difference between normal and pterygium epithelium for Ki67.

Our results indicate an abnormal expression of Hsp90 and ki-67 in pterygium samples when compared to normal conjunctiva.The finding of abnormal expression of levels of Hsp90 in pterygium samples can stimulate new research into pterygium and its recurrence.

Virtual Slides
The virtual slide(s) for this article can be found here:

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Εnhanced expression of transcription factor hypoxia inducible factor HIF-1α is known to play a critical role in the modulation of cell metabolism and survival pathways as well as having stem-cell-like properties. Furthermore, accumulated data reveal the existence of cross-regulation between the oxygen-sensing and heat shock pathways contributing to the adaptation of cells under stressful conditions. Pterygium, a stem cell disorder with premalignant features, has been reported to demonstrate hypoxia. The purpose of this study was to investigate the co-expression patterns of transcription factor HIF-1α and von Hippel Lindau protein (pVHL)-which normally acts to keep levels of HIF-1α activity low under normoxic conditions-in pterygium and normal conjunctival human samples. Additionally, expression of HIF-1α compared to the activation of heat shock proteins (Hsp90, Hsp70, and Hsp27) was studied. Emphasis was placed on the detection of HIF-1α and Hsp90, which associates with and stabilizes HIF-1α to promote its transcriptional activity. Semi-serial paraffin-embedded sections and tissue extracts from pterygium and normal conjunctival samples were studied by immunohistochemistry and western blot analysis, respectively, with the use of specific antibodies. Double labeling immunofluorescence studies on cryostat sections were also included. Statistically significant increased expression of HIF-1α and Hsps (Hsp90, Hsp70, and Hsp27) in pterygia compared to normal conjunctiva was demonstrated (p<0.05). In contrast, no significant difference was detected for pVHL expression (p>0.05). Immunohistochemical findings revealed nuclear HIF-1α immunoreactivity in all the epithelial layers of 23/32 (71.8%) pterygium tissues. Furthermore, all epithelial layers of the majority (75%) of pterygium samples showed strong cytoplasmic immunoreactivity for Hsp27 while Hsp27 expression was detected in all pterygia (100%) examined. Hsp27 expression was not observed in the superficial layer of goblet cells. In some samples, focal basal epithelial cells exhibited weak Hsp27 expression or were Hsp27 immunonegative. Ιmmunoreactivity of phopsho-Hsp27 showed the same distribution pattern as Hsp27 did. Epithelium of all pterygia (100%) displayed moderate to strong Hsp90 cytoplasmic immunoreactivity. Furthermore, the majority of pterygia, specifically, 30/32 (93.7%) and 27/32 (84.3%) demonstrated, respectively, Hsp70 and pVHL cytoplasmic immunoreactivity. Hsp90, Hsp70, and pVHL immunoreactivity was mainly detected in basal and suprabasal epithelial layers even though strong immunoreactivity in all epithelial layers was also observed in some pterygia. Stroma vessels were immunopositive for Hsps (Hsp90, Hsp70, and Hsp27) and pVHL. A statistically significant correlation between the expression of HIF-1α and the activation status of Hsps (Hsp90, Hsp70, and Hsp27; p<0.05) was observed whereas HIF-1α expression did not correlate with pVHL expression (p>0.05). Double labeling immunofluorescence studies showed nuclear HIF-1α co-localization with cytoplasmic Hsp90 expression in cells distributed in the entire epithelium of pterygia, in contrast to, normal conjunctiva, which exhibited only a few scattered epithelial cells with cytoplasmic HIF-1α expression and basal epithelial cells with Hsp90 expression. The upregulation of coordinated activation of HIF-1α and Hsps in pterygium may represent an adaptive process for the survival of cells under stressful conditions. The significance of the association of HIF-1α with Hsp90 with respect to the therapeutic approach of pterygium requires further evaluation.
    Molecular vision 03/2014; 20:441-57. · 2.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The closure relation for a correlation function of third order suggested by Schwartz and Ehrenreich in the framework of the electron theory of liquid metals is substituted into the formal relation connecting g(2) with g(3). The equation determining the radial distribution function, obtained in this way, is solved for the fluid of hard spheres. Comparison of this solution with the solution of the Born-Green-Yvon equation and with the exact results for a hard-sphere fluid indicates that the closure relation due to Schwartz and Ehrenreich is inferior to the superposition approximation due to Kirkwood.
    Physica A: Statistical Mechanics and its Applications 01/1975; 81(1):145-150. DOI:10.1016/0378-4371(75)90041-2 · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maintenance of tissue homeostasis relies on the accurate regulation of tissue specific stem cell activity which is governed by the dynamic interaction between the positive and negative feedback modulating mechanism of stem cell microenvironmental niche. Alteration or deregulation of the “stem-microenvironmental networking” provokes disease development. Limbal epithelial stem cells (LESC) are the initiator hierarchy that maintains corneal integrity. Compartmentalization of LESC within the limbal vicinity provides an opportunity to understand the stem-microenvironmental relationship. The purpose of this study was to determine the microenvironmental alteration associated with LESCs fate in pterygium condition in comparison with healthy state. Clinical observations evaluated the ocular surface disorder with respect to corneal vascularization, tear film abnormality, and thickening of limbal area in pterygium patients. Structural alteration of limbal stem/progenitor cells and its neighboring niche components were observed using histology and scanning electron microscopy. Receptor overexpression of TGFβ-R1, EGF-R1, and IL6-Rα and alteration of IL2-Rα expression pointed toward aberration of “stem-microenvironmental networking” in the limbal vicinity during disease development. Increased cell proliferation index along with TERT, Cyclin-D1, and PCNA over-expression in limbal part of pterygium epithelial cells indicated increased cellular proliferation and disturbed homeostatic equilibrium. We postulate that pterygium is associated with limbal microenvironmental anomaly where the resident epithelial cells became hyperproliferative.
    Molecular and Cellular Biochemistry 01/2015; 402(1-2). DOI:10.1007/s11010-014-2320-z · 2.39 Impact Factor

Full-text (4 Sources)

Available from
May 15, 2014