Analytical results for the material of the Chelyabinsk meteorite

Geochemistry International (Impact Factor: 0.53). 07/2013; 51(7). DOI: 10.1134/S0016702913070100

ABSTRACT This paper presents the results of the mineralogical, petrographic, elemental, and isotopic analysis of the Chelyabinsk meteorite and their geochemical interpretation. It was shown that the meteorite can be assigned to LL5-group ordinary chondrites and underwent moderate shock metamorphism (stage S4). The Chelyabinsk meteorite contains a significant fraction (approximately one-third by volume) of shock-melted material similar in composition to the main volume of the meteorite. The results of isotopic analysis suggest that the history of meteorite formation included an impact event approximately 290 Ma ago.

  • [Show abstract] [Hide abstract]
    ABSTRACT: On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long-lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre-atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half-life (0.717 Myr), the cosmic-ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments.
    02/2015; 50(2). DOI:10.1111/maps.12419
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The orbit of the Chelyabinsk object is calculated, applying the least-squares method directly to astrometric positions. The dynamical evolution of this object in the past is studied by integrating equations of motion for particles with orbits from the confidence region. It is found that the majority of the Chelyabinsk clones reach the near-Sun state. Sixty-seven percent of these objects have collisions with the Sun for 15 Myr in our numerical simulations. The distribution of minimum solar distances shows that the most probable time for the encounters of the Chelyabinsk object with the Sun lies in the interval from −0.8 Myr to −2 Myr. This is consistent with the estimate of a cosmic ray exposure age of 1.2 Myr (Popova et al. 2013). A parent body of the Chelyabinsk object should experience strong tidal and thermal effects at this time. The possible association of the Chelyabinsk object with 86039 (1999 NC43) and 2008 DJ is discussed.
    11/2014; 49(12). DOI:10.1111/maps.12382


Available from
Jun 5, 2014