Article

Immunological Aspects in Amyotrophic Lateral Sclerosis

Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil.
Translational Stroke Research 09/2012; 3(3). DOI: 10.1007/s12975-012-0177-6

ABSTRACT Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron death, leading to muscle atrophy, paralysis, and death usually within 3 to 5 years after diagnosis. Most cases are sporadic, with still undefined etiopathogenesis. Both the innate and adaptive immune systems are involved in ALS, with special participation of T lymphocytes and microglia. Inflammation plays a dual role in the disease, protective and T regulatory cell rich in the early stages and deleterious as disease progresses. Attempts to modulate immune/inflammatory system response are reported in the literature, and while beneficial effects are achieved in ALS animal models, results of most clinical trials have been disappointing. The impaired blood–brain barrier is an important feature in the pathogenesis of ALS and likely affects the immune system response. The present review describes the role of the immune system in ALS pathogenesis and the tight coupling of immunity and central nervous system barrier function.

1 Follower
 · 
63 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The migration of immune cells into the stroke-damaged brain has been reported for decades [1, 2] but its relationship to neurodegeneration is still not completely understood. Cells of the innate immune system are among the first immune cells to extravasate along with the adaptive immune cells infiltrating at later time points [3]. The inflammatory response elicited from these immune cells directly exacerbates the neurodegeneration in the ischemic area as well as indirectly by activating microglia [4]. This observation has led to the use of anti-inflammatory therapies in stroke treatment. One problem with this approach is the potentiation of the post-stroke immune suppression, which leads to increased infection rates [5]. The clinical trial evaluating anti-ICAM-1 therapy is an example of this issue in which one of the adverse events was increased incidence of pneumonia in the treatment group [6]. Thus, therapies that are more selective or targeted at the neurodegenerative response by th ...
    Translational Stroke Research 09/2014; 5(6). DOI:10.1007/s12975-014-0372-8 · 1.94 Impact Factor