Article

Congenital Heart Defects in Patients with Deletions Upstream of SOX9

Université de Nantes, Nantes, France.
Human Mutation (Impact Factor: 5.05). 12/2013; 34(12). DOI: 10.1002/humu.22449
Source: PubMed

ABSTRACT Heterozygous loss-of-function coding-sequence mutations of the transcription factor SOX9 cause campomelic dysplasia (CD), a rare skeletal dysplasia with congenital bowing of long bones (campomelia), hypoplastic scapulae, a missing pair of ribs, pelvic and vertebral malformations, clubbed feet, Pierre Robin sequence (PRS), facial dysmorphia and disorders of sex development (DSD). We report here two unrelated families that include patients with isolated PRS, isolated congenital heart defect (CHD), or both anomalies. Patients from both families carried a very similar ∼1 Mb deletion upstream of SOX9. Analysis of ChIP-Seq from mouse cardiac tissue for H3K27ac, a marker of active regulatory elements, led us to identify several putative cardiac enhancers within the deleted region. One of these elements is known to interact with Nkx2.5 and Gata4, two transcription factors responsible for CHDs. Altogether, these data suggest that disruption of cardiac enhancers located upstream of SOX9 may be responsible for CHDs in humans. This article is protected by copyright. All rights reserved.

0 Followers
 · 
81 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Campomelic dysplasia (CD) is an autosomal, dominantly inherited, skeletal abnormality belonging to the subgroup of bent bone dysplasias. In addition to bowed lower limbs, CD typically includes the following: disproportionate short stature, flat face, micrognathia, cleft palate, bell-shaped thorax, and club feet. Up to three quarters of 46, XY individuals may be sex-reversed. Radiological signs include scapular and pubic hypoplasia, narrow iliac wings, spaced ischia, and bowed femora and tibiae. Lethal CD is usually due to heterozygous mutations in SOX9, a major regulator of chondrocytic development. We present a detailed clinical and molecular characterization of nine Brazilian CD patients. Infants were either stillborn (n = 2) or died shortly after birth and presented similar phenotypes. Sex-reversal was observed in one of three chromosomally male patients. Sequencing of SOX9 revealed new heterozygous mutations in seven individuals. Six patients had mutations that resulted in premature transcriptional termination, while one infant had a single-nucleotide substitution at the conserved splice-site acceptor of intron 1. No clear genotype-phenotype correlations were observed. This study highlights the diversity of SOX9 mutations leading to lethal CD, and expands the group of known genetic alterations associated with this skeletal dysplasia.
    Genetics and Molecular Biology 03/2015; 38(1):14-20. DOI:10.1590/S1415-475738120140147 · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Congenital heart disease (CHD) is the most prevalent type of birth defect in humans and is the leading non-infectious cause of infant death worldwide. There is a growing body of evidence demonstrating that genetic defects play an important role in the pathogenesis of CHD. However, CHD is a genetically heterogeneous disease and the genetic basis underpinning CHD in an overwhelming majority of patients remains unclear. In this study, the coding exons and splice junction sites of the TBX1 gene, which encodes a T-box homeodomain transcription factor essential for proper cardiovascular morphogenesis, were sequenced in 230 unrelated children with CHD. The available family members of the index patient carrying an identified mutation and 200 unrelated ethnically matched healthy individuals used as controls were subsequently genotyped for TBX1. The functional effect of the TBX1 mutation was predicted by online program MutationTaster and characterized by using a dual-luciferase reporter assay system. As a result, a novel heterozygous TBX1 mutation, p.Q277X, was identified in an index patient with double outlet right ventricle (DORV) and ventricular septal defect (VSD). Genetic analysis of the proband's available relatives showed that the mutation co-segregated with CHD transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation, which was absent in 400 control chromosomes, altered the amino acid that was completely conserved evolutionarily across species and was predicted to be disease-causing by MutationTaster. Biochemical analysis revealed that Q277X-mutant TBX1 lost transcriptional activating function when compared with its wild-type counterpart. This study firstly associates TBX1 loss-of-function mutation with enhanced susceptibility to DORV and VSD in humans, which provides novel insight into the molecular mechanism underlying CHD and suggests potential implications for the development of new preventive and therapeutic strategies for CHD.
    Pediatric Cardiology 04/2015; DOI:10.1007/s00246-015-1173-x · 1.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Congenital heart disease (CHD) is the most common form of birth defect in humans and is the leading non-infectious cause of infant mortality. Emerging evidence strongly suggests that genetic risk factors play an important role in the pathogenesis of CHD. However, CHD is of pronounced genetic heterogeneity, and the genetic defects responsible for CHD in an overwhelming majority of patients remain unclear. In this study, the entire coding region and splice junction sites of the PITX2c gene, which encodes a paired-like homeodomain transcription factor crucial for proper cardiovascular morphogenesis, was sequenced in 170 unrelated neonates with CHD. The available relatives of the mutation carriers and 200 unrelated ethnically matched healthy individuals were genotyped. The disease-causing potential of the PITX2c sequence variations was predicted by MutationTaster and PolyPhen-2. The functional effect of the mutations was characterized using a luciferase reporter assay system. As a result, 2 novel heterozygous PITX2c mutations, p.R91Q and p.T129S, were identified in 2 unrelated newborns with transposition of the great arteries and ventricular septal defect, respectively. A genetic scan of the pedigrees revealed that each mutation co-segregated with CHD transmitted in an autosomal dominant pattern with complete penetrance. The mutations, which altered the amino acids completely conserved evolutionarily, were absent in 400 normal chromosomes and were predicted to be causative. Functional analysis revealed that the PITX2c mutations were both associated with significantly diminished transcriptional activity compared with their wild-type counterpart. This study demonstrates the association between PITX2c loss-of-function mutations and the transposition of the great arteries and ventricular septal defect in humans, providing further insight into the molecular mechanisms responsible for CHD.
    International Journal of Molecular Medicine 03/2014; 33(5). DOI:10.3892/ijmm.2014.1689 · 1.88 Impact Factor