Classification of Rhabdomyosarcoma and Its Molecular Basis.

*Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK †Laboratory of Pathology, National Cancer Institute, Bethesda, MD.
Advances in anatomic pathology (Impact Factor: 3.22). 11/2013; 20(6):387-397. DOI: 10.1097/PAP.0b013e3182a92d0d
Source: PubMed

ABSTRACT Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, has traditionally been classified into embryonal rhabdomyosarcoma (ERMS) and alveolar rhabdomyosarcoma (ARMS) for pediatric oncology practice. This review outlines the historical development of classification of childhood RMS and the challenges that have been associated with it, particularly problems with the diagnosis of "solid variant" ARMS and its distinction from ERMS. In addition to differences in clinical presentation and outcome, a number of genetic features underpin separation of ERMS from ARMS. Genetic differences associated with RMS subclassification include the presence of reciprocal translocations and their associated fusions in ARMS, amplification of genes in ARMS and its fusion subsets, chromosomal losses and gains that mostly occur in ERMS, and allelic losses and mutations usually associated with ERMS. Chimeric proteins encoded in most ARMS from the fusion of PAX3 or PAX7 with FOXO1 are expressed, result in a distinct pattern of downstream protein expression, and appear to be the proximate cause of the bad outcome associated with this subtype. A sizeable minority of ARMS lacks these fusions and shares the clinical and biological features of ERMS. A battery of immunohistochemical tests may prove useful in separating ERMS from ARMS and fusion-positive ARMS from fusion-negative ARMS. Because of limitation of predicting outcome solely based on histologic classification, treatment protocols will begin to utilize fusion testing for stratification of affected patients into low-risk, intermediate-risk, and high-risk groups.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sarcomas are rare and heterogeneous neoplasms of mesenchymal tissues with diverse morphologies and clinical behavior. In the last few years, the discovery of specific genetic aberrations in these tumors has allowed better classification and understanding of mechanisms driving their pathogenesis. While the majority of sarcomas are still treated by traditional modalities, molecular markers driving the pathogenesis have paved the way for more accurate diagnosis and opportunity to explore other therapeutic strategies. This review discusses the available molecular tools in sarcoma diagnostics and highlight some of the biological significance of the recent discoveries and their clinical applications.
    Expert Review of Molecular Diagnostics 08/2014; · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As the first step in evaluating the possibility of low-temperature atmospheric plasma for clinical applications in the treatment of rhabdomyosarcoma (RMS), we determined the effects of plasma exposure on C2C12 myoblasts. The low-temperature atmospheric plasma was generated through an electrical discharge in argon gas. One minute of plasma exposure every 24 h inhibited the cell proliferation, whereas myoblast differentiation was not affected. Plasma exposure increased the phosphorylation of ERK and JNK at 30 min after the exposure, but the phosphorylation of both was decreased to less than control levels at 1 and 4 h after the exposure. Plasma exposure increased the percentage of cells in the G2/M phase at 8 h after the exposure. In conclusion, plasma exposure retarded the proliferation of C2C12 myoblasts by G2/M arrest. Therefore, plasma exposure can be a possible treatment for the anti-proliferative effects of malignant tumors, such as RMS, without affecting differentiated skeletal muscle cells.
    The journal of physiological sciences : JPS. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence. Despite advances in therapy, patients with histological variant of rhabdomyosarcoma known as alveolar rhabdomyosarcoma (ARMS) have a 5-year survival of less than 30%. Caveolin-1 (CAV1), encoding the structural component of cellular caveolae, is a suggested tumor suppressor gene involved in cell signaling. In the present study we report that compared to other forms of rhabdomyosarcoma (RMS) CAV1 expression is either undetectable or very low in ARMS cell lines and tumor samples. DNA methylation analysis of the promoter region and azacytidine-induced re-expression suggest the involvement of epigenetic mechanisms in the silencing of CAV1. Reintroduction of CAV1 in three of these cell lines impairs their clonogenic capacity and promotes features of muscular differentiation. In vitro, CAV1-expressing cells show high expression of Caveolin-3 (CAV3), a muscular differentiation marker. Blockade of MAPK signaling is also observed. In vivo, CAV1-expressing xenografts show growth delay, features of muscular differentiation and increased cell death. In summary, our results suggest that CAV1 could function as a potent tumor suppressor in ARMS tumors. Inhibition of CAV1 function therefore, could contribute to aberrant cell proliferation, leading to ARMS development.
    Oncotarget 08/2014; · 6.64 Impact Factor