Thermal and rheological study of polysaccharides for enhanced oil recovery

Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States
Journal of Thermal Analysis and Calorimetry (Impact Factor: 2.21). 07/2006; 85(1). DOI: 10.1007/s10973-005-7339-7

ABSTRACT Enhanced oil recovery
process is based on the injection of chemical products (e.g. polymers, surfactants,
gases) or thermal energy (originating from the injection of e.g. steam, hot
water, in situ combustion) to recover crude oil. One of these processes use
polymer solution to mobilize the oil in the reservoir. In this work the thermal
decomposition kinetic of xanthan gum, guar gum and a blend (50/50 mass/mass%)
was studied according to Ozawa–Flynn–Wall method. According to
the kinetic analysis, the studied systems were copmpatible. The rheological
behavior of the samples was studied in distilled water and seawater at different
temperatures. Only the blend was studied in distilled water presented synergism
(enhancement in material properties like stability and viscosity) which was
confirmed through rheology.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Guar gum is a natural polysaccharide that has been explored for various applications. However, there is a limited number of studies in which guar gum has been used as a filler in a polymer. The effect of guar gum and its hydroxypropyl derivatives in unsaturated polyester composites were investigated with respect to their mechanical and chemical properties. The effect of hydroxypropylation and the degree of hydroxypropylation on the properties of resultant composites were also studied. It was observed that the inclusion of guar gum and its derivatives resulted in composites with increased solvent resistance and mechanical properties. An increase in the degree of substitution resulted in increased polymer-filler interac- tion reflected by a positive effect on the mechanical properties of the composites. These results open an avenue for the use of polysaccharides and their derivatives as eco-friendly fillers as a replacement of mineral fillers.
    eXPRESS Polymer Letters 09/2007; 1(9):622-628. DOI:10.3144/expresspolymlett.2007.85 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aqueous solutions of a charged hydrophobically modified hydroxyethylcellulose (HM-HEC(−)) exhibit high viscosities even at low polymer concentrations (0.2 wt%), which is an interesting feature in connection with enhanced oil recovery. This polymer was synthesized for this work. Effects of temperature and addition of sodium dodecyl sulfate (SDS) or hydroxypropyl-β-cyclodextrin (HP-β-CD) on the viscosity properties of a semidilute solution of HM-HEC(−) are examined. The results for the HM-HEC(−)/SDS system disclose strong interactions between HM-HEC(−) and SDS at low level of SDS addition, and this leads to a significant viscosification of the polymer–surfactant mixture. At higher surfactant concentrations the association complexes are disrupted. A strong temperature effect of the viscosity is observed at moderate levels of SDS addition, with lower values of the viscosity at elevated temperatures because of enhanced polymer chain mobility that breaks up the associations. Addition of HP-β-CD monomers to the HM-HEC(−) solution generates decoupling of associations via inclusion complex formation with the polymer hydrophobic tails and the viscosity decreases. By using temperature and addition of these co-solutes, it is demonstrated that the viscosity of the polymer solution can be tuned over a large range of viscosity values.
    European Polymer Journal 04/2008; 44(4):959-967. DOI:10.1016/j.eurpolymj.2008.01.028 · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Guar gum (GG) and its derivatives are commonly used in aqueous solutions as rheology modifiers. The use of polysaccharides as fillers in thermoset polymer composites has as yet not received that attention attributed to other materials. In the present study GG and the effect of acrylation on its filler properties were evaluated. Unsaturated polyester composites were evaluated for their mechanical properties as well as solvent resistance and water absorption. It was observed that the acrylate derivatives with the highest degree of substitution resulted in composites with the best mechanical properties as well as increased toluene and water resistance. Thus, polysaccharides could be used as reinforcing fillers in thermoset composites.
    Polymer Bulletin 08/2008; 61(2):235-246. DOI:10.1007/s00289-008-0941-7 · 1.49 Impact Factor
Show more