Article

Autism traits in the RASopathies

Department of Psychiatry, University of California San Francisco, San Francisco, California, USA.
Journal of Medical Genetics (Impact Factor: 5.64). 10/2013; 51(1). DOI: 10.1136/jmedgenet-2013-101951
Source: PubMed

ABSTRACT Mutations in Ras/mitogen-activated protein kinase (Ras/MAPK) pathway genes lead to a class of disorders known as RASopathies, including neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Costello syndrome (CS), and cardio-facio-cutaneous syndrome (CFC). Previous work has suggested potential genetic and phenotypic overlap between dysregulation of Ras/MAPK signalling and autism spectrum disorders (ASD). Although the literature offers conflicting evidence for association of NF1 and autism, there has been no systematic evaluation of autism traits in the RASopathies as a class to support a role for germline Ras/MAPK activation in ASDs.
We examined the association of autism traits with NF1, NS, CS and CFC, comparing affected probands with unaffected sibling controls and subjects with idiopathic ASDs using the qualitative Social Communication Questionnaire (SCQ) and the quantitative Social Responsiveness Scale (SRS).
Each of the four major RASopathies showed evidence for increased qualitative and quantitative autism traits compared with sibling controls. Further, each RASopathy exhibited a distinct distribution of quantitative social impairment. Levels of social responsiveness show some evidence of correlation between sibling pairs, and autism-like impairment showed a male bias similar to idiopathic ASDs.
Higher prevalence and severity of autism traits in RASopathies compared to unaffected siblings suggests that dysregulation of Ras/MAPK signalling during development may be implicated in ASD risk. Evidence for sex bias and potential sibling correlation suggests that autism traits in the RASopathies share characteristics with autism traits in the general population and clinical ASD population and can shed light on idiopathic ASDs.

Full-text

Available from: Robert L Hendren, Dec 17, 2013
1 Follower
 · 
174 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardio-facio-cutaneous syndrome (CFC) is one of the RASopathies that bears many clinical features in common with the other syndromes in this group, most notably Noonan syndrome and Costello syndrome. CFC is genetically heterogeneous and caused by gene mutations in the Ras/mitogen-activated protein kinase pathway. The major features of CFC include characteristic craniofacial dysmorphology, congenital heart disease, dermatologic abnormalities, growth retardation, and intellectual disability. It is essential that this condition be differentiated from other RASopathies, as a correct diagnosis is important for appropriate medical management and determining recurrence risk. Children and adults with CFC require multidisciplinary care from specialists, and the need for comprehensive management has been apparent to families and health care professionals caring for affected individuals. To address this need, CFC International, a nonprofit family support organization that provides a forum for information, support, and facilitation of research in basic medical and social issues affecting individuals with CFC, organized a consensus conference. Experts in multiple medical specialties provided clinical management guidelines for pediatricians and other care providers. These guidelines will assist in an accurate diagnosis of individuals with CFC, provide best practice recommendations, and facilitate long-term medical care.
    Pediatrics 09/2014; 134(4). DOI:10.1542/peds.2013-3189 · 5.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.
    eLife Sciences 12/2014; 3. DOI:10.7554/eLife.05151 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive and behavioral disorders affect nearly 80% of all children with the neurofibromatosis type 1 inherited cancer syndrome, and are among the most significant clinical manifestations for patients and their families. One of the barriers to successful therapeutic intervention is the wide spectrum of clinical phenotypic expression, ranging from visuospatial learning problems to social perceptual deficits (autism). Leveraging numerous small-animal models of neurofibromatosis type 1, several promising targets have been identified to treat the learning, attention, and autism spectrum phenotypes in this at-risk population. In this review, we provide an up-to-date summary of our current understanding of these disorders in NF1, and propose future research directions aimed at designing more effective therapeutic approaches and clinical trials.
    Expert Review of Neurotherapeutics 08/2014; 14(10). DOI:10.1586/14737175.2014.953931 · 2.83 Impact Factor