A biomechanical analysis of initial fixation options for porous-tantalum-backed glenoid components

Department of Orthopaedic Surgery, Beaumont Health System, Royal Oak, MI, USA.
Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons ... [et al.] (Impact Factor: 2.37). 05/2013; 22(5):709–715. DOI: 10.1016/j.jse.2012.07.001

ABSTRACT Background
Porous-tantalum (PT)-backed glenoid components have recently been developed to improve fixation and minimize the incidence of glenoid component loosening, which remains a key limiting factor in long-term survival in total shoulder arthroplasty. PT-backed glenoids promote bony ingrowth as a method of preventing glenoid loosening at the prosthesis-glenoid interface. The use of polymethyl-methacrylate (PMMA) cement for initial fixation may prevent osteointegration due to mechanical occlusion of the porous surface and the nonosteoconductive properties of PMMA. This study aims to investigate alternative fixation methods of PT-backed glenoids in a biomechanical investigation.

Materials and methods
Nine PT-backed monoblock glenoid components were implanted in a polyurethane bone substitute using either press-fit, PMMA cement, or calcium phosphate cement techniques. A control group of 3 all-polyethylene pegged glenoid components was implanted with PMMA. Glenoid and humeral head components were fixed to a biomechanical testing machine for testing according to ASTM Standard F-2028. The humeral head was translated ±1.5 mm along the superior-inferior axis for 50,000 cycles for characterization of glenoid rocking and inferior-superior translation.

Glenoid compression and glenoid distraction followed similar patterns for PT-backed glenoids. Overall, the all-polyethylene cemented glenoid demonstrated superior fixation compared to all PT-backed groups throughout the test. Glenoids fixed with PMMA cement displayed more favorable initial fixation and resistance to glenoid motion throughout cyclic testing.

This study showed that among PT-backed glenoids, PMMA fixation provided an increase in stability during initial and final cycles compared to press-fit and calcium-phosphate fixation techniques. This improved stability may enhance the osteointegration of the implant.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of tantalum as biomaterial for orthopedic applications is gaining considerable attention in the clinical practice because it presents an excellent chemical stability, body fluid resistance, biocompatibility, and it is more osteoconductive than titanium or cobalt-chromium alloys. Nonetheless, metallic biomaterials are commonly bioinert and may not provide fast and long-lasting interactions with surrounding tissues. The use of short cell adhesive peptides derived from the extracellular matrix has shown to improve cell adhesion and accelerate the implant's biointegration in vivo. However, this strategy has been rarely applied to tantalum materials. In this work, we have studied two immobilization strategies (physical adsorption and covalent binding via silanization) to functionalize tantalum surfaces with a cell adhesive RGD peptide. Surfaces were used untreated or activated with either HNO3 or UV/ozone treatments. The process of biofunctionalization was characterized by means of physicochemical and biological methods. Physisorption of the RGD peptide on control and HNO3-treated tantalum surfaces significantly enhanced the attachment and spreading of osteoblast-like cells; however, no effect on cell adhesion was observed in ozone-treated samples. This effect was attributed to the inefficient binding of the peptide on these highly hydrophilic surfaces, as evidenced by contact angle measurements and X-ray photoelectron spectroscopy. In contrast, activation of tantalum with UV/ozone proved to be the most efficient method to support silanization and subsequent peptide attachment, displaying the highest values of cell adhesion. This study demonstrates that both physical adsorption and silanization are feasible methods to immobilize peptides onto tantalum-based materials, providing them with superior bioactivity.
    Journal of Materials Science Materials in Medicine 02/2015; 26(2):5445. DOI:10.1007/s10856-015-5445-z · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An open-cell metallic foam was employed as an analogue material for human trabecular bone to interface with polymethyl methacrylate (PMMA) bone cement to produce composite foam-cement interface specimens. The stress-displacement curves of the specimens were obtained experimentally under tension, shear, mixed tension and shear (mixed-mode), and step-wise compression loadings. In addition, under step-wise compression, an image-guided failure assessment (IGFA) was used to monitor the evolution of micro-damage of the interface. Microcomputed tomography (µCT) images were used to build a subject-specific model, which was then used to perform finite element (FE) analysis under tension, shear and compression. For tension-shear loading conditions, the strengths of the interface specimens were found to increase with the increase of the loading angle reaching the maximum under shear loading condition, and the results compare reasonably well with those from bone-cement interface. Under compression, however, the mechanical strength measured from the foam-cement interface is much lower than that from bone-cement interface. Furthermore, load transfer between the foam and the cement appears to be poor under both tension and compression, hence the use of the foam should be discouraged as a bone analogue material for cement fixation studies in joint replacements.
    Journal of Materials Science Materials in Medicine 07/2013; 24(11). DOI:10.1007/s10856-013-5000-8 · 2.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Total shoulder arthroplasty is technically demanding in regard to implantation of the glenoid component, especially in the setting of increased glenoid deformity and posterior glenoid wear. Augmented glenoid implants are an important and innovative option; however, there is little evidence accessible to surgeons to guide in the selection of the appropriate size augmented glenoid. Solid computer models of commercially available augmented glenoid components (+3, +5, +7) contained within the software allowed placement of the best fit glenoid component within the three-dimensional reconstruct of each patient's scapula. Peg perforation, amount of bone reamed, and amount of medialization were recorded for each augment size. There was strong correlation between the medialization of the joint line and the glenoid retroversion for each augmented component at neutral correction and correction to 6° of retroversion. At neutral, the range of retroversion that restored the anatomic joint line was -3° to -17° with use of the +3 augmented glenoid, -5° to -24° with the +5 augmented glenoid, and -9° to -31° with the +7 augmented glenoid. At 6° of retroversion, the range of retroversion that restored the anatomic joint line was -4° to -21° with use of the +3 augmented glenoid, -7° to -27° with the +5 augmented glenoid, and -9° to -34° with the +7 augmented glenoid. There was a strong correlation between glenoid retroversion and medialization for all augment sizes, supporting the recommendation for glenoid retroversion as the primary guide in selecting the amount of augmentation.
    Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons ... [et al.] 01/2014; DOI:10.1016/j.jse.2013.09.022 · 2.37 Impact Factor