Article

Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8

Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Tel. +81-3-5449-5372
Journal of Human Genetics (Impact Factor: 2.53). 06/2002; 47(6). DOI: 10.1007/s100380200041

ABSTRACT Single-nucleotide polymorphisms (SNPs) at some gene loci are useful as markers of individual risk for adverse drug reactions or susceptibility to complex diseases. We have been focusing on identifying SNPs in and around genes encoding drug-metabolizing enzymes and transporters, and have constructed several high-density SNP maps of such regions. Here we report SNPs at additional loci, specifically 13 genes belonging to the superfamily of ATP-binding cassette transporters (ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8). Sequencing a total of 416 kb of genomic DNA from 48 Japanese volunteers identified 605 SNPs among these 13 loci: 14 in 5′ flanking regions, 5 in 5′ untranslated regions, 37 within coding elements, 529 in introns, 8 in 3′ untranslated regions, and 12 in 3′ flanking regions. By comparing our data with SNPs deposited in the dbSNP database of the National Center for Biotechnology Information (US) and with published reports, we determined that 491 (81%) of the SNPs reported here were novel. We also detected 107 genetic variations of other types among the loci examined (insertion–deletions or mono- di-, or trinucleotide polymorphisms). The high-density SNP maps we constructed on the basis of these data should provide useful information for investigating associations between genetic variations and common diseases or responsiveness to drug therapy.

0 Bookmarks
 · 
44 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid) in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs), i.e., 421C>A (major) and 376C>T (minor), in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.
    Pharmaceuticals 11/2013; 6(11):1347-1360.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery and characterization of breast cancer resistance protein (BCRP) as an efflux transporter conferring multidrug resistance has set off a remarkable trajectory in the understanding of its role in physiology and disease. While the relevance in drug resistance and general pharmacokinetic properties quickly became apparent, the lack of a characteristic phenotype in genetically impaired animals and humans cast doubt on the physiological importance of this ATP-binding cassette family member, similarly to fellow multidrug transporters, despite well-known endogenous substrates. Later, high-performance genetic analyses and fine resolution tissue expression data forayed into unexpected territories concerning BCRP relevance, and ultimately, the rise of quantitative proteomics allows putting observed interactions into absolute frameworks for modeling and insight into interindividual and species differences. This overview summarizes existing knowledge on the BCRP transporter on molecular, tissue and system level, both in physiology and disease, and describes a selection of experimental procedures that are the most widely applied for the identification and characterization of substrate and inhibitor-type interactions.
    Archives of Toxicology 04/2014; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The xenobiotic transporters are among the most important constituents of detoxification system in living organisms. Breast cancer resistance protein (BCRP/ABCG2) is one of the major transporters involved in the efflux of xenobiotics. To understand its role in chemotherapeutic and multidrug resistance, it is crucial to establish the determinants of its substrate specificity, which obviously is of high relevance for successful therapy of many diseases. This article summarizes the current knowledge about the substrate preferences of BCRP. We overview the factors which determine its activity, inhibition and substrate recognition, focusing on the structural features of the transporter. BCRP substrate specificity is quite low as it interacts with a spectrum of substances with only a few common features: hydrophobic and aromatic regions, possibly a flat conformation and the metal ion-, oxygen- and nitrogen-containing functionalities, most of which may be the donors/acceptors of H-bonds. Several amino acid residues and structural motifs are responsible for BCRP activity and substrate recognition. Thus, the active form of BCRP, at least a dimer or a larger oligomer is maintained by intramolecular disulfide bridge that involves Cys(603) residues. The GXXXG motif in transmembrane helix 1, Cys residues, Arg(482) and Lys(86) are responsible for maintaining the protein structure, which confers transport activity, and the His(457) or Arg(456) residues are directly involved in substrate binding. Arg(482) does not directly bind substrates, but electrostatically interacts with charged molecules, which initiates the conformational changes that transmit the signal from the transmembrane regions to the ABC domain.
    Drug Metabolism Reviews 07/2014; · 6.29 Impact Factor

Preview

Download
0 Downloads
Available from