Article

Glutamine Sensitivity Analysis Identifies the xCT Antiporter as a Common Triple-Negative Breast Tumor Therapeutic Target.

UCSF/Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address: .
Cancer cell (Impact Factor: 23.89). 10/2013; DOI: 10.1016/j.ccr.2013.08.020
Source: PubMed

ABSTRACT A handful of tumor-derived cell lines form the mainstay of cancer therapeutic development, yielding drugs with an impact typically measured as months to disease progression. To develop more effective breast cancer therapeutics and more readily understand their clinical impact, we constructed a functional metabolic portrait of 46 independently derived breast cell lines. Our analysis of glutamine uptake and dependence identified a subset of triple-negative samples that are glutamine auxotrophs. Ambient glutamine indirectly supports environmental cystine acquisition via the xCT antiporter, which is expressed on one-third of triple-negative tumors in vivo. xCT inhibition with the clinically approved anti-inflammatory sulfasalazine decreases tumor growth, revealing a therapeutic target in breast tumors of poorest prognosis and a lead compound for rapid, effective drug development.

Download full-text

Full-text

Available from: Anneleen Daemen, Jun 29, 2015
0 Followers
 · 
203 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor suppressors Pten and p53 are frequently lost in breast cancer, yet the consequences of their combined inactivation are poorly understood. Here, we show that mammary-specific deletion of Pten via WAP-Cre, which targets alveolar progenitors, induced tumors with shortened latency compared to those induced by MMTV-Cre, which targets basal/luminal progenitors. Combined Pten-p53 mutations accelerated formation of claudin-low, triple-negative-like breast cancer (TNBC) that exhibited hyper-activated AKT signaling and more mesenchymal features relative to Pten or p53 single-mutant tumors. Twenty-four genes that were significantly and differentially expressed between WAP-Cre:Pten/p53 and MMTV-Cre:Pten/p53 tumors predicted poor survival for claudin-low patients. Kinome screens identified eukaryotic elongation factor-2 kinase (eEF2K) inhibitors as more potent than PI3K/AKT/mTOR inhibitors on both mouse and human Pten/p53-deficient TNBC cells. Sensitivity to eEF2K inhibition correlated with AKT pathway activity. eEF2K monotherapy suppressed growth of Pten/p53-deficient TNBC xenografts in vivo and cooperated with doxorubicin to efficiently kill tumor cells in vitro. Our results identify a prognostic signature for claudin-low patients and provide a rationale for using eEF2K inhibitors for treatment of TNBC with elevated AKT signaling.
    EMBO Molecular Medicine 10/2014; 6(12):1542-1560. DOI:10.15252/emmm.201404402 · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many cancer cells consume large quantities of glutamine to maintain TCA cycle anaplerosis and support cell survival. It was therefore surprising when RNAi screening revealed that suppression of citrate synthase (CS), the first TCA cycle enzyme, prevented glutamine-withdrawal-induced apoptosis. CS suppression reduced TCA cycle activity and diverted oxaloacetate, the substrate of CS, into production of the nonessential amino acids aspartate and asparagine. We found that asparagine was necessary and sufficient to suppress glutamine-withdrawal-induced apoptosis without restoring the levels of other nonessential amino acids or TCA cycle intermediates. In complete medium, tumor cells exhibiting high rates of glutamine consumption underwent rapid apoptosis when glutamine-dependent asparagine synthesis was suppressed, and expression of asparagine synthetase was statistically correlated with poor prognosis in human tumors. Coupled with the success of L-asparaginase as a therapy for childhood leukemia, the data suggest that intracellular asparagine is a critical suppressor of apoptosis in many human tumors.
    Molecular Cell 09/2014; 56(2). DOI:10.1016/j.molcel.2014.08.018 · 14.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glutamine serves as an important source of energy and building blocks for many tumor cells. The first step in glutamine utilization is its conversion to glutamate by the mitochondrial enzyme glutaminase. CB-839 is a potent, selective, and orally bioavailable inhibitor of both splice variants of glutaminase (KGA and GAC). CB-839 had anti-proliferative activity in a triple-negative breast cancer (TNBC) cell line, HCC-1806, that was associated with a marked decrease in glutamine consumption, glutamate production, oxygen consumption, and the steady state levels of glutathione and several tricarboxylic acid cycle intermediates. In contrast, no anti-proliferative activity was observed in an estrogen receptor positive cell line, T47D, and only modest effects on glutamine consumption and downstream metabolites were observed. Across a panel of breast cancer cell lines, GAC protein expression and glutaminase activity were elevated in the majority of TNBC cell lines relative to receptor positive cells. Furthermore, the TNBC subtype displayed the greatest sensitivity to CB-839 treatment and this sensitivity was correlated with: i) dependence on extracellular glutamine for growth, ii) intracellular glutamate and glutamine levels, and iii) GAC (but not KGA) expression, a potential biomarker for sensitivity. CB-839 displayed significant anti-tumor activity in two xenograft models: as a single agent in a patient-derived TNBC model and in a basal like HER2+ cell line model, JIMT-1, both as a single agent and in combination with paclitaxel. Together, these data provide a strong rationale for the clinical investigation of CB-839 as a targeted therapeutic in patients with TNBC and other glutamine-dependent tumors.
    Molecular Cancer Therapeutics 02/2014; 13(4). DOI:10.1158/1535-7163.MCT-13-0870 · 6.11 Impact Factor