Article

White Matter Abnormalities and Structural Hippocampal Disconnections in Amnestic Mild Cognitive Impairment and Alzheimer's Disease.

Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging (MCSA), McGill University, Montreal, Quebec, Canada.
PLoS ONE (Impact Factor: 3.53). 09/2013; 8(9):e74776. DOI: 10.1371/journal.pone.0074776
Source: PubMed

ABSTRACT The purpose of this project was to evaluate white matter degeneration and its impact on hippocampal structural connectivity in patients with amnestic mild cognitive impairment, non-amnestic mild cognitive impairment and Alzheimer's disease. We estimated white matter fractional anisotropy, mean diffusivity and hippocampal structural connectivity in two independent cohorts. The ADNI cohort included 108 subjects [25 cognitively normal, 21 amnestic mild cognitive impairment, 47 non-amnestic mild cognitive impairment and 15 Alzheimer's disease]. A second cohort included 34 subjects [15 cognitively normal and 19 amnestic mild cognitive impairment] recruited in Montreal. All subjects underwent clinical and neuropsychological assessment in addition to diffusion and T1 MRI. Individual fractional anisotropy and mean diffusivity maps were generated using FSL-DTIfit. In addition, hippocampal structural connectivity maps expressing the probability of connectivity between the hippocampus and cortex were generated using a pipeline based on FSL-probtrackX. Voxel-based group comparison statistics of fractional anisotropy, mean diffusivity and hippocampal structural connectivity were estimated using Tract-Based Spatial Statistics. The proportion of abnormal to total white matter volume was estimated using the total volume of the white matter skeleton. We found that in both cohorts, amnestic mild cognitive impairment patients had 27-29% white matter volume showing higher mean diffusivity but no significant fractional anisotropy abnormalities. No fractional anisotropy or mean diffusivity differences were observed between non-amnestic mild cognitive impairment patients and cognitively normal subjects. Alzheimer's disease patients had 66.3% of normalized white matter volume with increased mean diffusivity and 54.3% of the white matter had reduced fractional anisotropy. Reduced structural connectivity was found in the hippocampal connections to temporal, inferior parietal, posterior cingulate and frontal regions only in the Alzheimer's group. The severity of white matter degeneration appears to be higher in advanced clinical stages, supporting the construct that these abnormalities are part of the pathophysiological processes of Alzheimer's disease.

0 Bookmarks
 · 
141 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose hypometabolism and gray matter atrophy are well known consequences of Alzheimer's disease (AD). Studies using these measures have shown that the earliest clinical stages, in which memory impairment is a relatively isolated feature, are associated with degeneration in an apparently remote group of areas-mesial temporal lobe (MTL), diencephalic structures such as anterior thalamus and mammillary bodies, and posterior cingulate. These sites are thought to be strongly anatomically inter-connected via a limbic-diencephalic network. Diffusion tensor imaging or DTI-an imaging technique capable of probing white matter tissue microstructure-has recently confirmed degeneration of the white matter connections of the limbic-diencephalic network in AD by way of an unbiased analysis strategy known as tract-based spatial statistics (TBSS). The present review contextualizes the relevance of these findings, in which the fornix is likely to play a fundamental role in linking MTL and diencephalon. An interesting by-product of this work has been in showing that alterations in diffusion behavior are complex in AD-while early studies tended to focus on fractional anisotropy, recent work has highlighted that this measure is not the most sensitive to early changes. Finally, this review will discuss in detail several technical aspects of DTI both in terms of image acquisition and TBSS analysis as both of these factors have important implications to ensure reliable observations are made that inform understanding of neurodegenerative diseases.
    Frontiers in Aging Neuroscience 10/2014; 6:266. DOI:10.3389/fnagi.2014.00266 · 2.84 Impact Factor

Full-text (2 Sources)

Download
54 Downloads
Available from
Jun 4, 2014