Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles

Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6. Electronic address: .
Biosensors & Bioelectronics (Impact Factor: 6.45). 09/2013; 52C:337-344. DOI: 10.1016/j.bios.2013.08.058
Source: PubMed

ABSTRACT The study presented herein investigates a novel arrangement of fiber-optic biosensors based on a tilted fiber Bragg grating (TFBG) coated with noble metal nanoparticles, either gold nanocages (AuNC) or gold nanospheres (AuNS). The biosensors constructed for this study demonstrated increased specificity and lowered detection limits for the target protein than a reference sensor without gold nanoparticles. The sensing film was fabricated by a series of thin-film and monolayer depositions to attach the gold nanoparticles to the surface of the TFBG using only covalent bonds. Though the gold nanoparticle integration had not yet been optimized for the most efficient coverage with minimum number of nanoparticles, binding AuNS and AuNC to the TFBG biosensor decreased the minimum detected target concentrations from 90nM for the reference sensor, to 11pM and 8pM respectively. This improvement of minimum detection is the result of a reduced non-specific absorption onto the gold nanoparticles (by functionalization of the external surface of the gold nanoparticles), and of an optical field enhancement due to coupling between the photonic modes of the optical fiber and the localized surface plasmon resonances (LSPR) of the gold nanoparticles. This coupling also increased the sensitivity of the TFBG biosensor to changes in its local environment. The dissociation constant (Kd) of the target protein was also characterized with our sensing platform and found to be in good agreement with that of previous studies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a brief overview of the technologies used to implement surface plasmon resonance (SPR) effects into fiber-optic sensors for chemical and biochemical applications and a survey of results reported over the last ten years. The performance indicators that are relevant for such systems, such as refractometric sensitivity, operating wavelength, and figure of merit (FOM), are discussed and listed in table form. A list of experimental results with reported limits of detection (LOD) for proteins, toxins, viruses, DNA, bacteria, glucose, and various chemicals is also provided for the same time period. Configurations discussed include fiber-optic analogues of the Kretschmann-Raether prism SPR platforms, made from geometry-modified multimode and single-mode optical fibers (unclad, side-polished, tapered, and U-shaped), long period fiber gratings (LPFG), tilted fiber Bragg gratings (TFBG), and specialty fibers (plastic or polymer, microstructured, and photonic crystal fibers). Configurations involving the excitation of surface plasmon polaritons (SPP) on continuous thin metal layers as well as those involving localized SPR (LSPR) phenomena in nanoparticle metal coatings of gold, silver, and other metals at visible and near-infrared wavelengths are described and compared quantitatively.
    Analytical and Bioanalytical Chemistry 01/2015; 407(14). DOI:10.1007/s00216-014-8411-6 · 3.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on
    Optics Express 06/2014; 22(12-12):15049-15063. DOI:10.1364/OE.22.015049 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Near-field scanning optical microscopy was used in collection mode to examine the optical field distribution on the surface of tilted fiber Bragg gratings (TFBGs) coated with a layer of randomly spaced silver nanocubes. The nanocubes disturb the periodic pattern of the near field visible light distribution arising from counterpropagating cladding modes excited by the TFBG. Spots with more than two orders of magnitude enhancement of the near field light intensity were observed around the nanocubes, as well as an average enhancement over the whole surface of about an order of magnitude relative to uncoated fibers. The near field speckle pattern associated with nanocubes showed a 180-degree periodicity with respect to the linear polarization of the input excitation light launched in the fiber core. The observed phenomena are explained in terms of the plasmonic properties of silver nanocubes. The enhancement factors measured here explain previously observed improvements in the performance of metal nanoparticle coated TFBG devices in sensing and as sources of light for surface-enhanced spectroscopy.
    RSC Advances 01/2014; 4(38-38):19725. DOI:10.1039/c4ra02770a · 3.71 Impact Factor