The impact of pedestrian countdown signals on pedestrian-motor vehicle collisions: a reanalysis of data from a quasi-experimental study.

Child Health Evaluative Sciences, The Hospital for Sick Children, , Toronto, Ontario, Canada.
Injury Prevention (Impact Factor: 1.94). 09/2013; DOI: 10.1136/injuryprev-2012-040717
Source: PubMed

ABSTRACT To perform a more sophisticated analysis of previously published data that advances the understanding of the efficacy of pedestrian countdown signal (PCS) installation on pedestrian-motor vehicle collisions (PMVCs), in the city of Toronto, Canada.
This is an updated analysis of the same dataset from Camden et al. A quasi-experimental design was used to evaluate the effect of PCS on PMVC. A Poisson regression analysis, using a one-group comparison of PMVC, pre-PCS installation to post-PCS installation was used, controlling for season and temporal effects. The outcome was the frequency of reported PMVC (January 2000-December 2009). Similar models were used to analyse specific types of collisions defined by age of pedestrian, injury severity, and pedestrian and vehicle action. Incidence rate ratios with 95% CI are presented.
This analysis included 9262 PMVC, 2760 during or after PCS installation, at 1965 intersections. There was a 26% increase in the rate of collisions, pre to post-PCS installation (incidence rate ratio=1.26, 95% CI 1.11 to 1.42).
The installation of PCS at 1965 signalised intersections in the city of Toronto resulted in an increase in PMVC rates post-PCS installation. PCSs may have an unintended consequence of increasing pedestrian-motor vehicle collisions in some settings.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pedestrians account for 40–50% of traffic fatalities in large cities. Several previous studies based on relatively small samples have concluded that Pedestrian Countdown Timers (PCT) may reduce pedestrian crashes at signalized intersections, but other studies report no reduction. The purposes of the present article are to (1) describe a new methodology to evaluate the effectiveness of introducing PCT signals and (2) to present results of applying this methodology to pedestrian crash data collected in a large study carried out in Detroit, Michigan. The study design incorporated within-unit as well as between-unit components. The main focus was on dynamic effects that occurred within the PCT unit of 362 treated sites during the 120 months of the study. An interrupted time-series analysis was developed to evaluate whether change in crash frequency depended upon of the degree to which the countdown timers penetrated the treatment unit. The between-unit component involved comparisons between the treatment unit and a control unit. The overall conclusion is that the introduction of PCT signals in Detroit reduced pedestrian crashes to approximately one-third of the preintervention level. The evidence for this reductionis strong and the change over time was shown to be a function of the extent to which the timers were introduced during the intervention period. There was no general drop-off in crash frequency throughout the baseline interval of over five years; only when the PCT signals were introduced in large numbers was consistent and convincing crash reduction observed. Correspondingly, there was little evidence of change in the control unit.
    Accident Analysis & Prevention 11/2014; 72:23–31. · 1.87 Impact Factor

Full-text (3 Sources)

Available from
Jun 5, 2014