Article

Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin.

DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany.
The EMBO Journal (Impact Factor: 10.75). 09/2013; DOI: 10.1038/emboj.2013.207
Source: PubMed

ABSTRACT Mislocalization and aggregation of Aβ and Tau combined with loss of synapses and microtubules (MTs) are hallmarks of Alzheimer disease. We exposed mature primary neurons to Aβ oligomers and analysed changes in the Tau/MT system. MT breakdown occurs in dendrites invaded by Tau (Tau missorting) and is mediated by spastin, an MT-severing enzyme. Spastin is recruited by MT polyglutamylation, induced by Tau missorting triggered translocalization of TTLL6 (Tubulin-Tyrosine-Ligase-Like-6) into dendrites. Consequences are spine loss and mitochondria and neurofilament mislocalization. Missorted Tau is not axonally derived, as shown by axonal retention of photoconvertible Dendra2-Tau, but newly synthesized. Recovery from Aβ insult occurs after Aβ oligomers lose their toxicity and requires the kinase MARK (Microtubule-Affinity-Regulating-Kinase). In neurons derived from Tau-knockout mice, MTs and synapses are resistant to Aβ toxicity because TTLL6 mislocalization and MT polyglutamylation are prevented; hence no spastin recruitment and no MT breakdown occur, enabling faster recovery. Reintroduction of Tau re-establishes Aβ-induced toxicity in TauKO neurons, which requires phosphorylation of Tau's KXGS motifs. Transgenic mice overexpressing Tau show TTLL6 translocalization into dendrites and decreased MT stability. The results provide a rationale for MT stabilization as a therapeutic approach.

1 Follower
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After central nervous system (CNS) injury, inhibitory factors in the lesion scar and poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier permeable microtubule stabilizing drug, epothilone B (epoB), decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury. Copyright © 2015, American Association for the Advancement of Science.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have found that those who suffer from posttraumatic stress disorder (PTSD) are more likely to experience dementia as they age, most often Alzheimer's disease (AD). These findings suggest that the symptoms of PTSD might have an exacerbating effect on AD progression. AD and PTSD might also share common susceptibility factors such that those who experience trauma-induced disease were already more likely to succumb to dementia with age. Here, we explored these two hypotheses using a mouse model of PTSD in wild-type and AD model animals. We found that expression of human familial AD mutations in amyloid precursor protein and presenilin 1 leads to sensitivity to trauma-induced PTSD-like changes in behavioral and endocrine stress responses. PTSD-like induction, in turn, chronically elevates levels of CSF β-amyloid (Aβ), exacerbating ongoing AD pathogenesis. We show that PTSD-like induction and Aβ elevation are dependent on corticotropin-releasing factor (CRF) receptor 1 signaling and an intact hypothalamic-pituitary-adrenal axis. Furthermore, we show that Aβ species can hyperexcite CRF neurons, providing a mechanism by which Aβ influences stress-related symptoms and PTSD-like phenotypes. Consistent with Aβ causing excitability of the stress circuitry, we attenuate PTSD-like phenotypes in vivo by lowering Aβ levels during PTSD-like trauma exposure. Together, these data demonstrate that exposure to PTSD-like trauma can drive AD pathogenesis, which directly perturbs CRF signaling, thereby enhancing chronic PTSD symptoms while increasing risk for AD-related dementia. Copyright © 2015 the authors 0270-6474/15/352612-12$15.00/0.
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the shared hallmarks of neurodegenerative diseases is the accumulation of misfolded proteins. Therefore, it is suspected that normal proteostasis is crucial for neuronal survival in the brain and that the malfunction of this mechanism may be the underlying cause of neurodegenerative diseases. The accumulation of amyloid plaques (APs) composed of amyloid-beta peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed of misfolded Tau proteins are the defining pathological markers of Alzheimer’s disease (AD). The accumulation of these proteins indicates a faulty protein quality control in the AD brain. An impaired ubiquitin-proteasome system (UPS) could lead to negative consequences for protein regulation, including loss of function. Another pivotal mechanism for the prevention of misfolded protein accumulation is the utilization of molecular chaperones. Molecular chaperones, such as heat shock proteins (HSPs) and FK506-binding proteins (FKBPs), are highly involved in protein regulation to ensure proper folding and normal function. In this review, we elaborate on the molecular basis of AD pathophysiology using recent data, with a particular focus on the role of the UPS and molecular chaperones as the defensive mechanism against misfolded proteins that have prion-like properties. In addition, we propose a rational therapy approach based on this mechanism.
    Molecular Neurobiology 01/2015; DOI:10.1007/s12035-014-9063-4 · 5.29 Impact Factor