Thalamic cholinergic innervation and postural sensory integration function in Parkinson's disease.

1 Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
Brain (Impact Factor: 10.23). 09/2013; DOI: 10.1093/brain/awt247
Source: PubMed

ABSTRACT The pathophysiology of postural instability in Parkinson's disease remains poorly understood. Normal postural function depends in part on the ability of the postural control system to integrate visual, proprioceptive, and vestibular sensory information. Degeneration of cholinergic neurons in the brainstem pedunculopontine nucleus complex and their thalamic efferent terminals has been implicated in postural control deficits in Parkinson's disease. Our aim was to investigate the relationship of cholinergic terminal loss in thalamus and cortex, and nigrostriatal dopaminergic denervation, on postural sensory integration function in Parkinson's disease. We studied 124 subjects with Parkinson's disease (32 female/92 male; 65.5 ± 7.4 years old; 6.0 ± 4.2 years motor disease duration; modified Hoehn and Yahr mean stage 2.4 ± 0.5) and 25 control subjects (10 female/15 male, 66.8 ± 10.1 years old). All subjects underwent (11)C-dihydrotetrabenazine vesicular monoaminergic transporter type 2 and (11)C-methylpiperidin-4-yl propionate acetylcholinesterase positron emission tomography and the sensory organization test balance platform protocol. Measures of dopaminergic and cholinergic terminal integrity were obtained, i.e. striatal vesicular monoaminergic transporter type 2 binding (distribution volume ratio) and thalamic and cortical acetylcholinesterase hydrolysis rate per minute (k3), respectively. Total centre of pressure excursion (speed), a measure of total sway, and sway variability were determined for individual sensory organization test conditions. Based on normative data, principal component analysis was performed to reduce postural sensory organization functions to robust factors for regression analysis with the dopaminergic and cholinergic terminal data. Factor analysis demonstrated two factors with eigenvalues >2 that explained 52.2% of the variance, mainly reflecting postural sway during sensory organization test Conditions 1-3 and 5, respectively. Regression analysis of the Conditions 1-3 postural sway-related factor [R(2)adj = 0.123, F(5,109) = 4.2, P = 0.002] showed that decreased thalamic cholinergic innervation was associated with increased centre of pressure sway speed (β = -0.389, t = -3.4, P = 0.001) while controlling for covariate effects of cognitive capacity and parkinsonian motor impairments. There was no significant effect of cortical cholinergic terminal deficits or striatal dopaminergic terminal deficits. This effect could only be found for the subjects with Parkinson's disease. We conclude that postural sensory integration function of subjects with Parkinson's disease is modulated by pedunculopontine nucleus-thalamic but not cortical cholinergic innervation. Impaired integrity of pedunculopontine nucleus cholinergic neurons and their thalamic efferents play a role in postural control in patients with Parkinson's disease, possibly by participating in integration of multimodal sensory input information.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in various genes adversely affect locomotion in model organisms, and thus provide valuable clues about the complex processes that control movement. In C. elegans, loss-of-function mutations in the Na(+) leak current channel (NALCN) and associated proteins (UNC-79 and UNC-80) cause akinesia and fainting (abrupt freezing of movement during escape from touch). It is not known how defects in the NALCN induce these phenotypes or if they are chronic and irreversible. Here, we report that akinesia and freezing are state-dependent and reversible in NALCN-deficient mutants (nca-1;nca-2, unc-79 and unc-80) when additional cation channels substitute for this protein. Two main measures of locomotion were evaluated: spontaneous movement (traversal of > 2 head lengths during a 5 sec observation period) and the touch-freeze response (movement greater than 3 body bends in response to tail touch). Food deprivation for as little as 3 min stimulated spontaneous movement and corrected the touch-freeze response. Conversely, food-deprived animals that moved normally in the absence of bacteria rapidly reverted to uncoordinated movement when re-exposed to food. The effects of food deprivation were mimicked by nicotine, which suggested that acetylcholine mediated the response. Nicotine appeared to act on interneurons or motor neurons rather than directly at the neuromuscular junction because levamisole, which stimulates muscle contraction, did not correct movement. Neural circuits have been proposed to account for the effects of food deprivation and nicotine on spontaneous movement and freezing. The NALCN may play an unrecognized role in human movement disorders characterized by akinesia and freezing gait.
    Genes Brain and Behavior 07/2014; DOI:10.1111/gbb.12153
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson's Disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive-behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional-motor integration by striatal circuitry.
    Experimental Neurology 05/2014; DOI:10.1016/j.expneurol.2014.04.032
  • Epilepsy & Behavior 12/2013; 31C:56. DOI:10.1016/j.yebeh.2013.11.015