Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review.

The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; National Science Research Council (CONICET), Argentina; Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel. Electronic address: .
Advanced drug delivery reviews (Impact Factor: 11.96). 09/2013; DOI: 10.1016/j.addr.2013.09.002
Source: PubMed

ABSTRACT Pumps of the ATP-binding cassette superfamily (ABCs) regulate the access of drugs to the intracellular space. In this context, the overexpression of ABCs is a well-known mechanism of multidrug resistance (MDR) in cancer and infectious diseases (e.g., viral hepatitis and the human immunodeficiency virus) and is associated with therapeutic failure. Since their discovery, ABCs have emerged as attractive therapeutic targets and the search of compounds that inhibit their genetic expression and/or their functional activity has gained growing interest. Different generations of pharmacological ABC inhibitors have been explored over the last four decades to address resistance in cancer, though clinical results have been somehow disappointing. "Generally Recognized As Safe" (GRAS) is a U.S. Food and Drug Administration designation for substances that are accepted as safe for addition in food. Far from being "inert", some amphiphilic excipients used in the production of pharmaceutical products have been shown to inhibit the activity of ABCs in MDR tumors, emerging as a clinically translatable approach to overcome resistance. The present article initially overviews the classification, structure and function of the different ABCs, with emphasis on those pumps related to drug resistance. Then, the different attempts to capitalize on the activity of GRAS nanopharmaceuticals as ABC inhibitors are discussed.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is the most common non-cutaneous malignancy in American men. Docetaxel is a useful chemotherapeutic agent for prostate cancer that has been available for over a decade, but the length of the treatment and systemic side effects hamper compliance. Additionally, docetaxel resistance invariably emerges, leading to disease relapse. Docetaxel resistance is either intrinsic or acquired by adopting various mechanisms that are highly associated with genetic alterations, decreased influx and increased efflux of drugs. Several combination therapies and small P-glycoprotein inhibitors have been proposed to improve the therapeutic potential of docetaxel in prostate cancer. Novel therapeutic strategies that may allow reversal of docetaxel resistance include alterations of enzymes, improving drug uptake and enhancement of apoptosis. In this review, we provide the most current docetaxel reversal approaches utilizing nanotechnology. Nanotechnology mediated docetaxel delivery is superior to existing therapeutic strategies and a more effective method to induce P-glycoprotein inhibition, enhance cellular uptake, maintain sustained drug release, and improve bioavailability.
    Drug Resistance Updates. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we investigated for the first time the conjugation of gluconolactone to a poly(ethylene oxide)-poly(propylene oxide) block copolymer by a microwave-assisted ring opening reaction. The glucosylated copolymer was obtained with high yield (90%). A conjugation extent of approximately 100% was achieved within 15 min. The modification reduced the critical micellar concentration and increased the size of the micelles. The agglutination of the modified polymeric micelles by a soluble lectin that binds glucose confirmed the recognizability of the modified nanocarrier. Finally, the solubilization of darunavir, an anti-HIV protease inhibitor, showed a sharp increase of the aqueous solubility from 91 microgram/mL to 14.2 and 18.9 mg/mL for 10% w/v pristine and glucosylated polymeric micelles, respectively.
    Macromolecular Bioscience 08/2014; · 3.74 Impact Factor


Available from
Jun 5, 2014