Article

Cav1.3 channel α1D protein is overexpressed and modulates androgen receptor transactivation in prostate cancers.

Department of Urology, The University of Kansas Medical Center, Kansas City, KS; Department of Urology, Tongji Hospital, Huanzhong University of Science & Technology, Wuhan, China.
Urologic Oncology (Impact Factor: 3.65). 09/2013; DOI: 10.1016/j.urolonc.2013.05.011
Source: PubMed

ABSTRACT Widespread use of L-type calcium channel blockers for treating hypertension has led to multiple epidemiologic studies to assess the risk of prostate cancer incidence. These studies revealed a reverse correlation between the likelihood of prostate cancer risk and the use of L-type calcium channel blockers among men without family history but the mechanism was not clear. In this study, we examined the expression profiles of multiple L-type calcium channel genes in prostate cancers and determined their functional roles in androgen receptor (AR) transactivation and cell growth. By reanalyzing the ONCOMINE database, we found that L-type calcium channel CACNA1D gene expression levels in cancer tissues were significantly higher than noncancer tissues in 14 of 15 published complementary deoxyribonucleic acid microarray data sets, of which 9 data sets showed an increase of 2- to 17-folds. Quantitative polymerase chain reaction and immunostaining experiments revealed that CACNA1D gene and its coding protein α1D were highly expressed in prostate cancers, especially in castration-resistant diseases, compared with benign prostate tissues. Consistent with the notion of CACNA1D as an ERG-regulated gene, CACNA1D gene expression levels were significantly higher in prostate cancers with TMPRSS2-ERG gene fusion compared with the cases without this gene fusion. Blocking L-type channel's function or knocking down CACNA1D gene expression significantly suppressed androgen-stimulated Ca(2+) influx, AR transactivation, and cell growth in prostate cancer cells. Taken together, these data suggest that CACNA1D gene overexpression is associated with prostate cancer progression and might play an important role in Ca(2+) influx, AR activation, and cell growth in prostate cancer cells.

0 Bookmarks
 · 
59 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is a gland tumor in the male reproductive system. It is a multifaceted and genomically complex disease. Transmembrane protease, serine 2 and v-ets erythroblastosis virus E26 homolog (TMPRSS2-ERG) gene fusions are the common molecular signature of prostate cancer. Although tremendous advances have been made in unraveling various facets of TMPRSS2-ERG-positive prostate cancer, many research findings must be sequentially collected and re-interpreted. It is important to understand the activation or repression of target genes and proteins in response to various stimuli and the assembly in signal transduction in TMPRSS2-ERG fusion-positive prostate cancer cells. Accordingly, we divide this multi-component review ofprostate cancer cells into several segments: 1) The role of TMPRSS2-ERG fusion in genomic instability and methylated regulation in prostate cancer and normal cells; 2) Signal transduction cascades in TMPRSS2-ERG fusion-positive prostate cancer; 3) Overexpressed genes in TMPRSS2-ERG fusion-positive prostate cancer cells; 4) miRNA mediated regulation of the androgen receptor (AR) and its associated protein network; 5) Quantitative control of ERG in prostate cancer cells; 6) TMPRSS2-ERG encoded protein targeting; In conclusion, we provide a detailed understanding of TMPRSS2-ERG fusion related information in prostate cancer development to provide a rationale for exploring TMPRSS2-ERG fusion-mediated molecular network machinery.
    Cancer Cell International 04/2014; 14(1):34. · 2.09 Impact Factor