Epigenetic analysis of the Notch superfamily in high-grade serous ovarian cancer

Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
Gynecologic Oncology (Impact Factor: 3.77). 03/2013; 128(3):506–511. DOI: 10.1016/j.ygyno.2012.11.029


Gene methylation and other epigenetic modifications of gene regulation have been implicated in the growth of ovarian cancer, but the clinical significance of such modifications in the Notch pathway in high-grade serous ovarian cancer (HGS-OvCa) is not well understood. We used The Cancer Genome Atlas (TCGA) data to study the clinical relevance of epigenetic modifications of Notch superfamily genes.Methods
We analyzed the interaction of DNA methylation and miRNAs with gene expression data for Notch superfamily members with the Spearman rank correlation test and explored potential relationships with overall survival (OS) with the log-rank test. We downloaded clinical data, level 3 gene expression data, and level 3 DNA methylation data for 480 patients with stage II–IV HGS-OvCa from the TCGA data portal. Patients were randomly divided into training and validation cohorts for survival analyses. In each set, patients were grouped into percentiles according to methylation and microRNA (miRNA) or messenger RNA (mRNA) levels. We used several algorithms to predict miRNA–mRNA interaction.ResultsThere were significant inverse relationships between methylation status and mRNA expression for PPARG, CCND1, and RUNX1. For each of these genes, patients with a lower methylation level and higher expression level had significantly poorer OS than did patients with a higher methylation level and lower expression level. We also found a significant inverse relationship between miRNAs and mRNA expression for CCND1, PPARG, and RUNX1. By further analyzing the effect of miRNAs on gene expression and OS, we found that patients with higher levels of CCND1, PPARG, and RUNX1 expression and lower expression levels of their respective miRNAs (502-5p, 128, and 215/625) had significantly poorer OS.Conclusions
Epigenetic alterations of multiple Notch target genes and pathway interacting genes (PPARG, CCND1, and RUNX1) may relate to activation of this pathway and poor survival of patients with HGS-OvCa.

19 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, we have identified the RUNX1 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from epithelial ovarian cancer (EOC) patients, when compared with primary cultures derived from matched primary (prior to CT) tumors. Here we show that RUNX1 displays a trend of hypomethylation, although not significant, in omental metastases compared with primary EOC tumors. Surprisingly, RUNX1 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. The RUNX1 expression levels were almost identical in primary tumors and omental metastases, suggesting that RUNX1 hypomethylation might have a limited impact on its overexpression in advanced (metastatic) stage of the disease. Knockdown of the RUNX1 expression in EOC cells led to sharp decrease of cell proliferation and induced G 1 cell cycle arrest. Moreover, RUNX1 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX1 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX1 gene in EOC progression and suggest that RUNX1 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX1 and other members of the RUNX gene family in ovarian tumorigenesis.
    Cell cycle (Georgetown, Tex.) 02/2013; 12(6). DOI:10.4161/cc.23963 · 4.57 Impact Factor

  • Gynecologic Oncology 03/2013; 128(3):407-8. DOI:10.1016/j.ygyno.2013.01.016 · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer.
    International Journal of Molecular Sciences 04/2013; 14(4):6624-48. DOI:10.3390/ijms14046624 · 2.86 Impact Factor
Show more