Article

Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
Toxicology and Applied Pharmacology (Impact Factor: 3.63). 10/2012; 264(1):94–103. DOI: 10.1016/j.taap.2012.07.021
Source: PubMed

ABSTRACT Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO2 and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO2 or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cells (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO2 nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO2 and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO2 nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO2 or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO2 and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions.

Full-text

Available from: Ulf Gehrmann, May 28, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brazil is a country of continental dimensions with a large heterogeneity of climates and massive mixing of the population. Almost the entire national territory is located between the Equator and the Tropic of Capricorn, and the Earth axial tilt to the south certainly makes Brazil one of the countries of the world with greater extent of land in proximity to the sun. The Brazilian coastline, where most of its population lives, is more than 8,500 km long. Due to geographic characteristics and cultural trends, Brazilians are among the peoples with the highest annual exposure to the sun. Epidemiological data show a continuing increase in the incidence of non-melanoma and melanoma skin cancers. Photoprotection can be understood as a set of measures aimed at reducing sun exposure and at preventing the development of acute and chronic actinic damage. Due to the peculiarities of Brazilian territory and culture, it would not be advisable to replicate the concepts of photoprotection from other developed countries, places with completely different climates and populations. Thus the Brazilian Society of Dermatology has developed the Brazilian Consensus on Photoprotection, the first official document on photoprotection developed in Brazil for Brazilians, with recommendations on matters involving photoprotection.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background This study evaluates the time-dependent pro-inflammatory response of the model human lung epithelial cells (A549) to industrially relevant zinc oxide nanoparticles (ZnO NPs). In terms of toxicity, ZnO-NPs are categorised into the group of high toxicity nanomaterials. However information on pro-inflammatory potential of these NPs at sub-toxic concentrations is limited. Understanding how cellular defense mechanisms function in the presence of sub-cytotoxic concentrations of these NPs is vital. Moreover, there is an urgent need for additional in vivo studies addressing pulmonary toxicity due to accidental inhalation of ZnO NPs.ResultsExposure to sub-cytotoxic ZnO NP concentrations (20 ¿g/mL) induced significant up-regulation of mRNA for the pro-inflammatory cytokine IL-8 and redox stress marker heme oxygenase-1, along with increased release of IL-8. The highest pro-inflammatory response was recorded after 4 to 6 hr exposure to ZnO NPs over a 24 hr period. Pre-treatment of A549 cells with the sulfhydryl antioxidant N-acetyl cysteine (at 5 mM) resulted in significant reduction of the up-regulation of inflammatory markers, confirming the role of reactive oxygen species in the observed immunomodulatory effects, independent of cytotoxicity. Furthermore, we report for the first time that, intranasal instillation of a single dose (5 mg/kg) of pristine or surfactant-dispersed ZnO NPs can cause pulmonary inflammation, already after 24 hr in a murine model. This was confirmed by up-regulation of eotaxin mRNA in the lung tissue and release of pro-inflammatory cytokines in the sera of mice exposed to ZnO NPs.Conclusion Our study highlights that even at sub-cytotoxic doses ZnO NPs can stimulate a strong inflammatory and antioxidant response in A549 cells. ZnO NP mediated cytotoxicity may be the outcome of failure of cellular redox machinery to contain excessive ROS formation. Moreover exposure to a single but relatively high dose of ZnO NPs via intranasal instillation may provoke acute pulmonary inflammatory reactions in vivo.
    Journal of Nanobiotechnology 02/2015; 13(1):6. DOI:10.1186/s12951-015-0067-7 · 4.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While zinc oxide (ZnO) nanoparticles (NPs) have been recognized to have promising applications in biomedicine, their immunotoxicity has been inconsistent and even contradictory. To address this issue, we investigated whether ZnO NPs with different size (20 or 100 nm) and electrostatic charge (positive or negative) would cause immunotoxicity in vitro and in vivo, and explored their underlying molecular mechanism. Using Raw 264.7 cell line, we examined the immunotoxicity mechanism of ZnO NPs as cell viability. We found that in a cell viability assay, ZnO NPs with different size and charge could induce differential cytotoxicity to Raw 264.7 cells. Specifically, the positively charged ZnO NPs exerted higher cytotoxicity than the negatively charged ones. Next, to gauge systemic immunotoxicity, we assessed immune responses of C57BL/6 mice after oral administration of 750 mg/kg/day dose of ZnO NPs for 2 weeks. In parallel, ZnO NPs did not alter the cell-mediated immune response in mice but suppressed innate immunity such as natural killer cell activity. The CD4(+)/CD8(+) ratio, a marker for matured T-cells was slightly reduced, which implies the alteration of immune status induced by ZnO NPs. Accordingly, nitric oxide production from splenocyte culture supernatant in ZnO NP-fed mice was lower than control. Consistently, serum levels of pro/anti-inflammatory (interleukin [IL]-1β, tumor necrosis factor-α, and IL-10) and T helper-1 cytokines (interferon-γ and IL-12p70) in ZnO NP-fed mice were significantly suppressed. Collectively, our results indicate that different sized and charged ZnO NPs would cause in vitro and in vivo immunotoxicity, of which nature is an immunosuppression.
    International Journal of Nanomedicine 01/2014; 9 Suppl 2:195-205. DOI:10.2147/IJN.S57935 · 4.20 Impact Factor