Article

Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
Toxicology and Applied Pharmacology (Impact Factor: 3.98). 10/2012; 264(1):94–103. DOI: 10.1016/j.taap.2012.07.021
Source: PubMed

ABSTRACT Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO2 and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO2 or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cells (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO2 nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO2 and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO2 nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO2 or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO2 and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions.

0 Bookmarks
 · 
91 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Researchers are increasingly focused on the nanoscale level of organization where biological processes take place in living systems. Nanoparticles (NPs, e.g., 1-100 nm diameter) are small forms of natural or manufactured source material whose properties differ markedly from those of the respective bulk forms of the "same" material. Certain NPs have diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show ability to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and surface charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic, and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capacity for other substances, enhanced bioavailability, and ability to cross otherwise impermeable cell membranes including the blood-brain barrier. With super-potent effects, nano-forms can evoke cellular stress responses or therapeutic effects not only at lower doses than their bulk forms, but also for longer periods of time. Interactions of initial effects and compensatory systemic responses can alter the impact of NPs over time. Taken together, the data suggest the need to downshift the dose-response curve of NPs from that for bulk forms in order to identify the necessarily decreased no-observed-adverse-effect-level and hormetic dose range for nanoparticles.
    Dose-response : a publication of International Hormesis Society. 05/2014; 12(2):202-32.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles are extensively used, but their interaction with the immune system is poorly understood, regardless of potential adverse effects. We assessed the impact of metallic Nps (ZnO, CeO2, TiO2 and Al2O3) measuring the expression of adhesion molecules and the chemokine receptor CXCR4 in peripheral blood lymphocytes, T cell proliferative responses, chemotaxis, basophil activation state and leukocyte oxidative burst after phagocytosis. We found that, although not toxic, metallic Nps do not seem inert, being able to alter key cell functions such as T cell proliferative responses and chemotaxis, which could translate into important side effects in a medical context.
    Nanomedicine: nanotechnology, biology, and medicine 01/2014; · 6.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Large efforts are invested on the development of in vitro tests to evaluate nanomaterial (NM) toxicity. In order to assess the relevance of the adverse effects identified in in vitro toxicity tests a thorough understanding of the biokinetics of NMs is critical. We used different in vitro and in vivo test methods to evaluate cell uptake and oral absorption of titanium dioxide nanoparticles (TiO2 NPs). These NPs were readily uptaken by A549 cells (carcinomic human alveolar basal epithelial cells) in vitro. Such rapid uptake contrasted with a very low oral absorption in a differentiated Caco-2 monolayer system (human epithelial colorectal adenocarcinoma cells) and after oral gavage administration to rats. In this oral study, no significant increase in the levels of titanium was recorded by ICP-MS in any of the tissues evaluated (including among other: small intestine, Peyer's patches, mesenteric lymph nodes, liver, and spleen). No NPs were observed by TEM in sections of the small intestine, except for several particles in the cytoplasm of a cell from a Peyer's Patch area. The observation of NPs in Peyer's Patch suggests that the Caco-2 monolayer system is likely to underestimate the potential for oral absorption of NPs and that the model could be improved by including M-cells in co-culture.
    Toxicology Letters 01/2014; · 3.15 Impact Factor

Full-text

View
41 Downloads
Available from
May 29, 2014