Adenovirus conducted connective tissue growth factor on extracellular matrix in trabecular meshwork and its role on aqueous humor outflow facility

Department of Ophthalmology, First Clinical College of Harbin Medical University, Harbin, 150001, China.
Molecular Biology Reports (Impact Factor: 2.02). 09/2013; 40(11). DOI: 10.1007/s11033-013-2720-2
Source: PubMed


Deposition of extracellular matrix (ECM) in trabecular meshwork, such as fibronectin, collagen IV, elastin. leads to increased resistance of trabecular meshwork in primary open angle glaucoma (POAG). Connective tissue growth factor (CTGF) is known to regulate the ECM deposits. In this study, we detect the effect of adenovirus conducted CTGF (Adv-CTGF) transfection on either the expression of ECM components or aqueous humor outflow facility. Adv-CTGF was used to transfect rat trabecular meshwork cells in vivo and in vitro. Aqueous humor outflow facility was test by microbeads perfusion. Protein expression of CTGF, fibronectin, and collagen IV was determined using Western blot. In the Adv-CTGF group, the outflow facility displayed a significant decrease from baseline. It appears as though the transfection with Adv-CTGF significantly affects the aqueous humor outflow pattern. A negative correlation between IOP and PEFL indicated that a decrease in the area of bead deposition corresponded to an overall decrease of outflow, leading to an elevated IOP. Adv-CTGF can enhance the expression of CTGF, fibronectin and collagen IV. CTGF is the novel target for treatment of POAG. It is necessary to further study to test inhibition of CTGF expression for treatment of POAG.

3 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide, and intraocular pressure (IOP) is an important modifiable risk factor. IOP is a function of aqueous humor production and aqueous humor outflow, and it is thought that prolonged IOP elevation leads to optic nerve damage over time. Within the trabecular meshwork (TM), the eye's primary drainage system for aqueous humor, matricellular proteins generally allow cells to modulate their attachments with and alter the characteristics of their surrounding extracellular matrix (ECM). It is now well established that ECM turnover in the TM affects outflow facility, and matricellular proteins are emerging as significant players in IOP regulation. The formalized study of matricellular proteins in TM has gained increased attention. Secreted protein acidic and rich in cysteine (SPARC), myocilin, connective tissue growth factor (CTGF), and thrombospondin-1 and -2 (TSP-1 and -2) have been localized to the TM, and a growing body of evidence suggests that these matricellular proteins play an important role in IOP regulation and possibly the pathophysiology of POAG. As evidence continues to emerge, these proteins are now seen as potential therapeutic targets. Further study is warranted to assess their utility in treating glaucoma in humans.
    Journal of Ocular Pharmacology and Therapeutics 06/2014; 30(6). DOI:10.1089/jop.2014.0013 · 1.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rodents are increasingly being used as glaucoma models to study ocular hypertension, optic neuropathy, and retinopathy. A number of different techniques are used to elevate intraocular pressure in rodent eyes by artificially obstructing the aqueous outflow pathway. Another successful technique to induce ocular hypertension is to transduce the trabecular meshwork of rodent eyes with viral vectors expressing glaucoma associated transgenes to provide more relevant models of glaucomatous damage to the trabecular meshwork. This technique has been used to validate newly discovered glaucoma pathogenesis pathways as well as to develop rodent models of primary open angle glaucoma. Ocular hypertension has successfully been induced by adenovirus 5 mediated delivery of mutant MYOC, bioactivated TGFβ2, SFRP1, DKK1, GREM1, and CD44. Advantages of this approach are: selective tropism for the trabecular meshwork, the ability to use numerous mouse strains, and the relatively rapid onset of IOP elevation. Disadvantages include mild-to-moderate ocular inflammation induced by the Ad5 vector and sometimes transient transgene expression. Current efforts are focused at discovering less immunogenic viral vectors that have tropism for the trabecular meshwork and drive sufficient transgene expression to induce ocular hypertension. This viral vector approach allows rapid proof of concept studies to study glaucomatous damage to the trabecular meshwork without the expensive and time-consuming generation of transgenic mouse lines. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Experimental Eye Research 05/2015; 141. DOI:10.1016/j.exer.2015.04.003 · 2.71 Impact Factor

Similar Publications