Article

Large-scale identification of ubiquitination sites by mass spectrometry

Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
Nature Protocol (Impact Factor: 8.36). 10/2013; 8(10):1950-60. DOI: 10.1038/nprot.2013.120
Source: PubMed

ABSTRACT Ubiquitination is essential for the regulation of cellular protein homeostasis. It also has a central role in numerous signaling events. Recent advances in the production and availability of antibodies that recognize the Lys-ɛ-Gly-Gly (K-ɛ-GG) remnant produced by trypsin digestion of proteins having ubiquitinated lysine side chains have markedly improved the ability to enrich and detect endogenous ubiquitination sites by mass spectrometry (MS). The following protocol describes the steps required to complete a large-scale ubiquitin experiment for the detection of tens of thousands of distinct ubiquitination sites from cell lines or tissue samples. Specifically, we present detailed, step-by-step instructions for sample preparation, off-line fractionation by reversed-phase chromatography at pH 10, immobilization of an antibody specific to K-ɛ-GG to beads by chemical cross-linking, enrichment of ubiquitinated peptides using these antibodies and proteomic analysis of enriched samples by LC-tandem MS (MS/MS). Relative quantification can be achieved by performing stable isotope labeling by amino acids in cell culture (SILAC) labeling of cells. After cell or tissue samples have been prepared for lysis, the described protocol can be completed in ∼5 d.

3 Followers
 · 
136 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced IL2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a novel mechanism of action for a therapeutic agent, alteration of the activity of an E3 ubiquitin ligase leading to selective degradation of specific targets.
    Science 11/2013; 343(6168). DOI:10.1126/science.1244851 · 31.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover.
    Advances in Experimental Medicine and Biology 01/2014; 806:93-106. DOI:10.1007/978-3-319-06068-2_5 · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin-proteasome system (UPS) controls intracellular protein turnover in a substrate-specific manner via E3-type ubiquitin ligases. Mammalian fertilization and particularly sperm penetration through the oocyte vitelline coat, the zona pellucida (ZP), is regulated by UPS. We use an extrinsic substrate of the proteasome-dependent ubiquitin-fusion degradation pathway, the mutant ubiquitin UBB(+1), to provide evidence that an E3-type ligase activity exists in sperm-acrosomal fractions. Protein electrophoresis gels from such de novo ubiquitination experiments contained a unique protein band identified by tandem mass spectrometry as being similar to ubiquitin ligase UBR7 (alternative name: C14ORF130). Corresponding mRNA was amplified from boar testis and several variants of the UBR7 protein were detected in boar, mouse and human sperm extracts by Western blotting. Genomic analysis indicated a high degree of evolutionary conservation, remarkably constant purifying selection and conserved testis expression of the UBR7 gene. By immunofluorescence, UBR7 was localized to the spermatid acrosomal cap and sperm acrosome, in addition to hotspots of proteasomal activity in spermatids, such as the cytoplasmic lobe, caudal manchette, nucleus and centrosome. During fertilization, UBR7 remained with the ZP-bound acrosomal shroud following acrosomal exocytosis. Thus, UBR7 is present in the acrosomal cap of round spermatids and within the acrosomal matrix of mature boar spermatozoa. These data provide the first evidence of ubiquitin ligase activity in mammalian spermatozoa and indicate UBR7 involvement in spermiogenesis.
    Cell and Tissue Research 03/2014; 356(1). DOI:10.1007/s00441-014-1808-x · 3.33 Impact Factor
Show more

Preview

Download
5 Downloads
Available from